Fonctions préharmoniques et applications conformes

Kilian Raschel

Journée en hommage à Jacques Neveu
Institut Henri Poincaré
23 mai 2017
Introduction & motivations

Applications in probability theory

Applications in combinatorics

Discrete harmonic functions in the quadrant
Introductory example & definition

Markov chains: example

1/2 1/2 1/2 1/2
1 2 3 4

1 & 4: absorbing states

Markov chains: general theorem

The hitting probabilities are characterized as being the minimal non-negative solutions to a system of linear recurrences.

Definition: f harmonic if $L[f](x) = 0$ for all x in a region $\subset \mathbb{Z}^d$.

$L[f](x) = \sum_{y \in N_y} p(y) \{f(x+y) - f(x)\}$,

with sets of neighbors $N_y \subset \mathbb{Z}^d$ and weights $p = \{p(y)\}_{y \in \mathbb{Z}^d}$.

Multivariate linear recurrences with constant coefficients

Bousquet-Mélou & Petkovšek '00
Introductory example & definition

Markov chains: example

\[f_i = \mathbb{P}_i[\text{hit 4}] \text{ satisfies} \]
\[
\begin{align*}
 f_1 &= 0 \\
 f_4 &= 1 \\
 f_2 &= \frac{1}{2} f_1 + \frac{1}{2} f_3 \\
 f_3 &= \frac{1}{2} f_2 + \frac{1}{2} f_4
\end{align*}
\]

Solution: \(f_1 = 0, f_2 = \frac{1}{3}, f_3 = \frac{2}{3}, f_4 = 1 \)

1 & 4: absorbing states
Introductory example & definition

Markov chains: example

The hitting probabilities are characterized as being the **minimal non-negative solutions** to a system of **linear recurrences**.
Markov chains: example

Introductory example & definition

Markov chains: general theorem

The hitting probabilities are characterized as being the minimal non-negative solutions to a system of linear recurrences.

Definition: f harmonic if $L[f](x) = 0$ for all x in a region $\subset \mathbb{Z}^d$

\[L[f](x) = \sum_{y \in N_y} p(y)\{ f(x+y) - f(x) \}, \]

with sets of neighbors $N_y \subset \mathbb{Z}^d$ and weights $p = \{ p(y) \}_{y \in \mathbb{Z}^d}$
Introductory example & definition

Markov chains: example

1/2 1/2 1/2

1 2 3 4

1/2

1 & 4: absorbing states

\[f_i = \mathbb{P}_i[\text{hit } 4] \text{ satisfies } \]

\[
\begin{align*}
 f_1 &= 0 \\
 f_2 &= \frac{1}{2} f_1 + \frac{1}{2} f_3 \\
 f_3 &= \frac{1}{2} f_2 + \frac{1}{2} f_4 \\
 f_4 &= 1
\end{align*}
\]

Solution: \(f_1 = 0, f_2 = \frac{1}{3}, f_3 = \frac{2}{3}, f_4 = 1 \)

Markov chains: general theorem

The hitting probabilities are characterized as being the *minimal non-negative solutions* to a system of *linear recurrences*.

Definition: \(f \) harmonic if \(L[f](x) = 0 \) for all \(x \) in a region \(\subset \mathbb{Z}^d \)

\[
L[f](x) = \sum_{y \in N_y} p(y) \{ f(x + y) - f(x) \},
\]

with *sets of neighbors* \(N_y \subset \mathbb{Z}^d \) and *weights* \(p = \{ p(y) \}_{y \in \mathbb{Z}^d} \)

▷ Multivariate linear recurrences with constant coefficients

[Bousquet-Mélou & Petkovšek '00]
Classical (continuous) harmonic functions in \mathbb{R}^d

$$\Delta[f](x) = \sum_{i=1}^{d} \frac{\partial^2 f(x)}{\partial x_i^2} = 0$$

- Possibility of adding weights \sim elliptic operators
- Harmonic functions satisfy various properties: maximum principle/mean value property/Harnack inequalities/Liouville’s theorem/relations with analytic functions/etc.
- Examples of application: Heat equation/Dirichlet problem/Poisson’s equation/more general PDEs/etc.
History of Questions on preharmonic functions (1/2)

Classical (continuous) harmonic functions in \mathbb{R}^d

$$\Delta[f](x) = \sum_{i=1}^{d} \frac{\partial^2 f(x)}{\partial x_i^2} = 0$$

- Possibility of adding weights \sim elliptic operators
- Harmonic functions satisfy various properties: maximum principle/mean value property/Harnack inequalities/Liouville’s theorem/relations with analytic functions/etc.
- Examples of application: Heat equation/Dirichlet problem/Poisson’s equation/more general PDEs/etc.

Do preharmonic functions satisfy similar properties?

- Dirichlet problem \Diamond Phillips & Wiener ’23; Bouligand ’25
- Harnack inequalities \Diamond Lawler & Polaski ’92; Varopoulos ’99
- Maximum principle, Liouville’s theorem & related topics \Diamond Heilbronn ’48
- Cauchy-Riemann equations \Diamond Duffin ’55; Kiselman ’05–’08
Further properties

- Rate of growth: Murdoch '63–'65; Ignatiuk-Robert '10
- Picard’s theorem (sign of harmonic functions) & factorization: Murdoch '63–'65
- Absolute monotonicity: Lippner & Mangoubi '15
History of Questions on Preharmonic Functions (2/2)

Further Properties

- **Rate of growth**
 - Murdoch '63–'65; Ignatiuk-Robert '10

- **Picard’s theorem (sign of harmonic functions) & factorization**
 - Murdoch '63–'65

- **Absolute monotonicity**
 - Lippner & Mangoubi '15

Preharmonic & Harmonic Functions

- **Relations between discrete & continuous harmonic functions**
 - Lusternik '26; Ferrand '44; Kesten '91; Varopoulos '09
History of/Questions on preharmonic functions (2/2)

Further properties

- Rate of growth
 Murdoch '63–'65; Ignatiuk-Robert '10

- Picard’s theorem (sign of harmonic functions) & factorization
 Murdoch '63–'65

- Absolute monotonicity
 Lippner & Mangoubi '15

Preharmonic & harmonic functions

- Relations between discrete & continuous harmonic functions
 Lusternik '26; Ferrand '44; Kesten '91; Varopoulos '09

Probability theory models

- Ising models
 Mercat '01; Smirnov '10; Chelkak '11; Beffara '12

- Conformal invariance of lattice models
 Duminil-Copin & Smirnov '12
Further properties

- Rate of growth
 - Murdoch '63–'65; Ignatiuk-Robert '10

- Picard’s theorem (sign of harmonic functions) & factorization
 - Murdoch '63–'65

- Absolute monotonicity
 - Lippner & Mangoubi '15

Preharmonic & harmonic functions

- Relations between discrete & continuous harmonic functions
 - Lusternik '26; Ferrand '44; Kesten '91; Varopoulos '09

Probability theory models

- Ising models
 - Mercat '01; Smirnov '10; Chelkak '11; Beffara '12

- Conformal invariance of lattice models
 - Duminil-Copin & Smirnov '12

Special discrete functions

- Conformal mappings
 - Ferrand '44; Isaacs '52

- Discrete harmonic polynomials & discrete exponential functions
 - Terracini '45–'46; Heilbronn '48; Isaacs '52; Duffin '55; Duffin & Peterson '68
Preharmonic functions (2/2)

Further properties

- Rate of growth
 Murdoch '63–'65; Ignatiuk-Robert '10

- Picard’s theorem (sign of harmonic functions) & factorization
 Murdoch '63–'65

- Absolute monotonicity
 Lippner & Mangoubi '15

Preharmonic & harmonic functions

- Relations between discrete & continuous harmonic functions
 Lusternik '26; Ferrand '44; Kesten '91; Varopoulos '09

Probability theory models

- Ising models
 Mercat '01; Smirnov '10; Chelkak '11; Beffara '12

- Conformal invariance of lattice models
 Duminil-Copin & Smirnov '12

Special discrete functions

- Conformal mappings
 Ferrand '44; Isaacs '52

- Discrete harmonic polynomials & discrete exponential functions
 Terracini '45–'46; Heilbronn '48; Isaacs '52; Duffin '55; Duffin & Peterson '68

Potential theory

- Martin boundary
 Woess '92; Kurkova & Malyshev '98; Ignatiuk-Robert & Loree '10; Mustapha '15
Warning: lattice walk enum. vs. preharmonic functions

Multivariate recurrence relations in both cases

- \(q(n; i, j) = \#_{\mathbb{N}^2} \{(0, 0) \xrightarrow{n} (i, j)\} \)
- \(q(n + 1; i, j) = q(n; i - 1, j) + q(n; i + 1, j) + q(n; i, j - 1) + q(n; i, j + 1) \) (Caloric functions)
Warning: lattice walk enum. vs. preharmonic functions

Multivariate recurrence relations in both cases

\(q(n; i, j) = \#_{\mathbb{N}^2} \{ (0, 0) \rightarrow^n (i, j) \} \)

\(q(n + 1; i, j) = q(n; i - 1, j) + q(n; i + 1, j) + q(n; i, j - 1) + q(n; i, j + 1) \)

(caloric functions)

\(f(i, j) = \frac{1}{4} \{ f(i - 1, j) + f(i + 1, j) + f(i, j - 1) + f(i, j + 1) \} \)

(preharmonic functions)

Main differences & difficulties

\(\blacksquare \) A unique solution vs. an unknown (\(\leq \infty \)) number of solutions

\(\blacksquare \) Consequence: *guess and prove* techniques do not work
Warning: lattice walk enum. vs. preharmonic functions

Multivariate recurrence relations in both cases

- \(q(n; i, j) = \#_{\mathbb{N}^2} \{ (0, 0) \xrightarrow{n} (i, j) \} \)
- \(q(n + 1; i, j) = q(n; i - 1, j) + q(n; i + 1, j) + q(n; i, j - 1) + q(n; i, j + 1) \)
 \((\text{Caloric functions})\)
- \(f(i, j) = \frac{1}{4} \{ f(i - 1, j) + f(i + 1, j) + f(i, j - 1) + f(i, j + 1) \} \)
 \((\text{Preharmonic functions})\)

Main differences & difficulties

- A unique solution vs. an unknown \((\leq \infty) \) number of solutions
- Consequence: \emph{guess and prove} techniques do not work
- Generating functions of preharmonic functions satisfy \emph{kernel functional equations}
- Preharmonic functions \(\approx \) homogenized enumeration problem:

\[
K(x, y)Q(x, y) = K(x, 0)Q(x, 0) + K(0, y)Q(0, y) - K(0, 0)Q(0, 0) - xy
\]

\[
K'(x, y)F(x, y) = K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0)
\]
Warning: lattice walk enum. vs. preharmonic functions

Multivariate recurrence relations in both cases

- \(q(n; i, j) = \#_{\mathbb{N}^2} \{(0, 0) \rightarrow^n (i, j)\} \)
- \(q(n + 1; i, j) = q(n; i - 1, j) + q(n; i + 1, j) + q(n; i, j - 1) + q(n; i, j + 1) \)
 \((\text{Caloric functions}) \)
- \(f(i, j) = \frac{1}{4} \{f(i - 1, j) + f(i + 1, j) + f(i, j - 1) + f(i, j + 1)\} \)
 \((\text{Preharmonic functions}) \)

Main differences & difficulties

- A unique solution vs. an unknown \((\leq \infty) \) number of solutions
- Consequence: guess and prove techniques do not work
- Generating functions of preharmonic functions satisfy kernel functional equations
- Preharmonic functions \(\approx \) homogenized enumeration problem:
 \(K(x, y)Q(x, y) = K(x, 0)Q(x, 0) + K(0, y)Q(0, y) - K(0, 0)Q(0, 0) - xy \)
 \(K'(x, y)F(x, y) = K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0) \)
- Preharmonic functions \(\rightsquigarrow \) counting numbers asymptotics
Introduction & motivations

Applications in probability theory

Applications in combinatorics

Discrete harmonic functions in the quadrant
Example: construct a 1D process conditioned to stay in \(\mathbb{N} \)
Example: construct a 1D process conditioned to stay in \mathbb{N}

Function $f(i) = i$ is positive harmonic and $f(0) = 0$

Weights $p(i, i \pm 1) = \frac{1}{2}$ become $p^f(i, i \pm 1) = \frac{1}{2} \frac{f(i \pm 1)}{f(i)} = \frac{1}{2} \frac{i \pm 1}{i}$
Doob transform

Example: construct a 1D process conditioned to stay in \mathbb{N}

Function $f(i) = i$ is positive harmonic and $f(0) = 0$

Weights $p(i, i \pm 1) = \frac{1}{2}$ become $p^f(i, i \pm 1) = \frac{1}{2} \frac{f(i \pm 1)}{f(i)} = \frac{1}{2} \frac{i \pm 1}{i}$

New weights sum to 1: $f(i - 1) + f(i + 1) = 2f(i)$

Discrete Bessel process

Biane ’90; Mishchenko ’05
Doob transform

(1/2)

Example: construct a 1D process conditioned to stay in \(\mathbb{N} \)

![Diagram](image)

- Function \(f(i) = i \) is positive harmonic and \(f(0) = 0 \)
- Weights \(p(i, i \pm 1) = \frac{1}{2} \) become \(p^f(i, i \pm 1) = \frac{1}{2} \frac{f(i \pm 1)}{f(i)} = \frac{1}{2} \frac{i \pm 1}{i} \)
- New weights sum to 1: \(f(i - 1) + f(i + 1) = 2f(i) \)

Discrete Bessel process

Biane '90; Mishchenko '05

Construction can be generalized

- *Random processes* conditioned never to leave *cones* of \(\mathbb{Z}^d \)
- Quantum random walks, eigenvalues of random matrices, non-colliding random walks, etc.

Dyson '62; Biane '90–'92; Eichelsbacher & König '08
A second way for the conditioning (with the first exit time)

- RW \(\{S(n)\}_{n \geq 0} \); first exit time \(\tau = \inf\{n \geq 0 : S(n) = 0\} \)
A second way for the conditioning (with the first exit time)

- RW \(\{S(n)\}_{n \geq 0} \); first exit time \(\tau = \inf\{n \geq 0 : S(n) = 0\} \)
- On the event \(\{\tau = \infty\} \), the RW stays in \(\{1, 2, 3, \ldots\} \)
A second way for the conditioning (with the first exit time)

- RW \(\{S(n)\}_{n \geq 0} \); first exit time \(\tau = \inf \{ n \geq 0 : S(n) = 0 \} \)
- On the event \(\{ \tau = \infty \} \), the RW stays in \(\{1, 2, 3, ...\} \)
- Replace \(\mathbb{P}[\cdot] \) by \(\mathbb{P}[\cdot | \{\tau = \infty\}] \) to obtain a conditioned RW
A second way for the conditioning (with the first exit time)

- RW \(\{ S(n) \}_{n \geq 0}; \) first exit time \(\tau = \inf\{ n \geq 0 : S(n) = 0 \} \)
- On the event \(\{ \tau = \infty \} \), the RW stays in \(\{1, 2, 3, \ldots\} \)
- Replace \(\mathbb{P}[\cdot] \) by \(\mathbb{P}[\cdot | \{ \tau = \infty \}] \) to obtain a conditioned RW
- Important question: do we have \(\mathbb{P}[\cdot | \{ \tau = \infty \}] = \mathbb{P}^f \)?
 - \(\text{Denisov & Wachtel '15 (general cones with zero drift); Courtiel, Melczer, Mishna & R. '16 (Gouyou-Beauchamps model with drift)} \)
- Difficulty: exit time \(\tau \)
A second way for the conditioning (with the first exit time)

- RW $\{S(n)\}_{n \geq 0}$; first exit time $\tau = \inf\{n \geq 0 : S(n) = 0\}$
- On the event $\{\tau = \infty\}$, the RW stays in $\{1, 2, 3, ...\}$
- Replace $P[\cdot]$ by $P[\cdot | \{\tau = \infty\}]$ to obtain a conditioned RW
- Important question: do we have $P[\cdot | \{\tau = \infty\}] = P^f$?

 - Denisov & Wachtel '15 (general cones with zero drift); Courtiel, Melczer, Mishna & R. '16 (Gouyou-Beauchamps model with drift)

- Difficulty: exit time τ

Example (1/3) in the quadrant: the simple walk

- Uniform weights $\frac{1}{4}$
- $f(i, j) = i \cdot j$
- Unique preharmonic function (up to multiplicative factors)
- Product form

 - Picardello & Woess '92
A second way for the conditioning (with the first exit time)

- RW $\{S(n)\}_{n \geq 0}$; first exit time $\tau = \inf\{n \geq 0 : S(n) = 0\}$
- On the event $\{\tau = \infty\}$, the RW stays in $\{1, 2, 3, \ldots\}$
- Replace $\mathbb{P}[\cdot]$ by $\mathbb{P}[\cdot | \{\tau = \infty\}]$ to obtain a conditioned RW
- Important question: do we have $\mathbb{P}[\cdot | \{\tau = \infty\}] = \mathbb{P}^f$?
 - Denisov & Wachtel '15 (general cones with zero drift); Courtiel, Melczer, Mishna & R. '16 (Gouyou-Beauchamps model with drift)
- Difficulty: exit time τ

Example (2/3) in the quadrant: the Tandem walk

- Uniform weights $\frac{1}{3}$
- $f(i, j) = i \cdot j \cdot (i + j)$
- Unique preharmonic function (up to multiplicative factors)
 - Biane '92
A second way for the conditioning (with the first exit time)

- RW \(\{S(n)\}_{n \geq 0}\); first exit time \(\tau = \inf\{n \geq 0 : S(n) = 0\}\)
- On the event \(\{\tau = \infty\}\), the RW stays in \(\{1, 2, 3, \ldots\}\)
- Replace \(\mathbb{P}[\cdot]\) by \(\mathbb{P}[\cdot | \{\tau = \infty\}]\) to obtain a conditioned RW
- Important question: do we have \(\mathbb{P}[\cdot | \{\tau = \infty\}] = \mathbb{P}^f\)?
 - Denisov & Wachtel '15 (general cones with zero drift); Courtiel, Melczer, Mishna & R. '16 (Gouyou-Beauchamps model with drift)
- Difficulty: exit time \(\tau\)

Example (3/3) in the quadrant: the GB walk

- Uniform weights \(\frac{1}{4}\)
- \(f(i,j) = i \cdot j \cdot (i + j) \cdot (i + 2j)\)
- Unique preharmonic function (up to multiplicative factors)
 - Biane '92
Martin boundary theory

Rough description

- *Martin boundary* $\partial \rightsquigarrow$ set of all harmonic functions

Minimal Martin boundary ∂_m; integral representation of all harmonic functions:

$$f = \int_{\partial_m} \{ \text{Martin kernel} \} \, d\mu_f$$

Martin ’41; Hunt ’57; Doob ’59; Choquet & Deny ’60; Ney & Spitzer ’66; Picardello & Woess ’92

Homogeneous random processes

- Well understood
 - Spitzer ’64; Ney & Spitzer ’66

Non-homogeneous random processes:

- Difficult problem
 - Walks related to Lie algebras
 - Biane ’90–’92
 - Quadrant walks with drift
 - Ignatiouk-Robert ’10
 - Quadrant walks with zero drift
 - Partial results by R. ’14; Bouaziz, Mustapha & Sifi ’15
 - General RW in cones: open problem (conjecture: uniqueness \iff drift = 0)
Martin boundary theory

Rough description

- **Martin boundary** $\partial \sim$ set of all harmonic functions
- **Minimal Martin boundary** $\partial_m \sim$ integral representation of all harmonic functions: $f = \int_{\partial_m} \{\text{Martin kernel}\} d\mu_f$

References:
- Martin '41;
- Hunt '57; Doob '59; Choquet & Deny '60; Ney & Spitzer '66; Picardello & Woess '92

- Homogeneous random processes
 - Well understood
 - Spitzer '64; Ney & Spitzer '66

- Non-homogeneous random processes:
 - Difficult problem
 - Walks related to Lie algebras
 - Biane '90–'92
 - Quadrant walks with drift
 - Ignatiouk-Robert '10
 - Quadrant walks with zero drift
 - Partial results by R. '14; Bouaziz, Mustapha & Sifi '15
 - General RW in cones: open problem (conjecture: uniqueness \iff drift = 0)
Martin boundary theory

Rough description

- **Martin boundary** $\partial \sim$ set of all harmonic functions
- **Minimal Martin boundary** $\partial_m \sim$ integral representation of all harmonic functions: $f = \int_{\partial_m} \{\text{Martin kernel}\} d\mu_f$

Homogeneous random processes

- Well understood

Non-homogeneous random processes:
 - Walks related to Lie algebras
 - Biane '90–'92
 - Quadrant walks with drift
 - Ignatiouk-Robert '10
 - Quadrant walks with zero drift
 - Partial results by R. '14; Bouaziz, Mustapha & Sifi '15
 - General RW in cones: open problem (conjecture: uniqueness \iff drift = 0)

References:

- Martin '41; Hunt '57; Doob '59; Choquet & Deny '60; Ney & Spitzer '66; Picardello & Woess '92
- Spitzer '64; Ney & Spitzer '66
Martin boundary theory

Rough description

- Martin boundary $\partial \sim$ set of all harmonic functions
- Minimal Martin boundary $\partial_m \sim$ integral representation of all harmonic functions: $f = \int_{\partial_m} \left\{\text{Martin kernel}\right\} d\mu_f$

Martin '41; Hunt '57; Doob '59; Choquet & Deny '60; Ney & Spitzer '66; Picardello & Woess '92

Homogeneous random processes

- Well understood

Spitzer '64; Ney & Spitzer '66

Non-homogeneous random processes: difficult problem

- Walks related to Lie algebras

- Quadrant walks with drift $\sum_{y \in \mathbb{N}} y \cdot p(y)$

- Quadrant walks with zero drift

 Partial results by R. '14; Bouaziz, Mustapha & Sifi '15

Biane '90–'92

Ignatiouk-Robert '10
Martin boundary theory

Rough description

- **Martin boundary** $\partial \sim$ set of all harmonic functions
- **Minimal Martin boundary** $\partial_m \sim$ integral representation of all harmonic functions: $f = \int_{\partial_m} \{\text{Martin kernel}\} d\mu_f$

Homogeneous random processes

- Well understood

Non-homogeneous random processes: difficult problem

- Walks related to Lie algebras
- Quadrant walks with drift $\sum_{y \in \mathbb{N}} y \cdot p(y)$
- Quadrant walks with zero drift
 Partial results by R. ’14; Bouaziz, Mustapha & Sifi ’15
- General RW in cones: open problem (conjecture: uniqueness \iff drift $= 0$)
Introduction & motivations

Applications in probability theory

Applications in combinatorics

Discrete harmonic functions in the quadrant
Asymptotics of some numbers of walks

Asymptotic statements

- **Total number of walks** starting at \((k, \ell)\):

 \[
 q(n; k, \ell; \mathbb{N}^2) = \#_{\mathbb{N}^2} \{(k, \ell) \xrightarrow{n} \mathbb{N}^2\} \\
 \sim f_1(k, \ell) \cdot \rho_1^n \cdot n^{\alpha_1}
 \]

 🛠 Not proved yet!
Asymptotics of some numbers of walks

Asymptotic statements

- **Total number of walks** starting at \((k, \ell)\):
 \[
 q(n; k, \ell; \mathbb{N}^2) = \#_{\mathbb{N}^2}\{(k, \ell) \xrightarrow{n} \mathbb{N}^2\}
 \sim f_1(k, \ell) \cdot \rho_1^n \cdot n^{\alpha_1}

 \]
 Not proved yet!

- **Excursions** starting at \((k, \ell)\):
 \[
 q(n; k, \ell; i, j) = \#_{\mathbb{N}^2}\{(k, \ell) \xrightarrow{n} (i, j)\}
 \sim f_2(k, \ell) \cdot f_2'(i, j) \cdot \rho_2^n \cdot n^{\alpha_2}

 \]
 Denisov & Wachtel '15

Application: random maps with bipolar orientations
Asymptotics of some numbers of walks

Asymptotic statements

- **Total number of walks** starting at \((k, \ell)\):
 \[
 q(n; k, \ell; \mathbb{N}^2) = \#_{\mathbb{N}^2}\{(k, \ell) \xrightarrow{n} \mathbb{N}^2\} \\
 \sim f_1(k, \ell) \cdot \rho_1^n \cdot n^{\alpha_1}
 \]
 Not proved yet!

- **Excursions** starting at \((k, \ell)\):
 \[
 q(n; k, \ell; i, j) = \#_{\mathbb{N}^2}\{(k, \ell) \xrightarrow{n} (i, j)\} \\
 \sim f_2(k, \ell) \cdot f_2'(i, j) \cdot \rho_2^n \cdot n^{\alpha_2}
 \]
 Denisov & Wachtel ’15

Application: random maps with bipolar orientations

© J. Bettinelli

Bousquet-Mélou, Fusy & R. ’17
Random generation

Aim: generate efficiently a long walk (e.g., confined to a region)

A walk of length 18000

Different methods

- **Recursive method** (step-by-step construction)
- **Bijections** (if existing) For Kreweras see Bernardi '07
- **Rejection algorithms** Bacher & Sportiello '16; Lumbroso, Mishna & Ponty '16
- **Preharmonic functions and Doob transform** Fusy '16

(Difficulty: after Doob transform, non-uniform walks)
Random generation

Aim: generate efficiently a long walk (e.g., confined to a region)

A walk of length 18000

Different methods

- **Recursive method** (step-by-step construction)
- **Bijections** (if existing) For Kreweras see 📘 Bernardi '07
- **Rejection algorithms** 📘 Bacher & Sportiello '16; Lumbroso, Mishna & Ponty '16
Random generation

Aim: generate efficiently a long walk (e.g., confined to a region)

A walk of length 18000

Different methods

- *Recursive method* (step-by-step construction)
- *Bijections* (if existing) For Kreweras see \(\textcircled{\text{ Bernardi '07}}\)
- *Rejection algorithms* \(\textcircled{\text{ Bacher & Sportiello '16; Lumbroso, Mishna & Ponty '16}}\)
- Preharmonic functions and *Doob transform* \(\textcircled{\text{ Fusy '16}}\)
 (Difficulty: after Doob transform, non-uniform walks)
Potential theoretic tools

Counting numbers are caloric functions

- Asymptotics of numbers of quadrant walks (also with inhomogeneities)
 D’Arco, Lacivita & Mustapha ’16
- Asymptotics in three quarters of plane
 Mustapha ’16

Zero drift case: classical inequalities

Varopoulos ’99–’09

General principle: there is a canonical function (the réduite of the cone f: $\Delta [f] = 0$) containing “all” the information

$\sum_{n; k, \ell; N} \approx f(k, \ell) \cdot \rho^n \cdot n^{\alpha}$ as $n \to \infty$

α = homogeneity degree of f

$\sim f$ asymptotically

Non-zero drift case: Cramér’s transform & ongoing work

Works if drift with ≤ 0 coordinates

Ongoing work in the remaining cases

Garbit, Mustapha & R.
Potential theoretic tools

Counting numbers are caloric functions

- Asymptotics of numbers of quadrant walks (also with inhomogeneities)
 D’Arco, Lacivita & Mustapha '16
- Asymptotics in three quarters of plane
 Mustapha '16

Zero drift case: classical inequalities
Varopoulos '99–'09

General principle: there is a canonical function (the réduite of the cone f_c: $\Delta[f_c] = 0$) containing “all” the information
Potential theoretic tools

Counting numbers are caloric functions

- Asymptotics of numbers of quadrant walks (also with inhomogeneities)
 D’Arco, Lacivita & Mustapha ’16
- Asymptotics in three quarters of plane
 Mustapha ’16

Zero drift case: classical inequalities
Varopoulos ’99–’09

General principle: there is a canonical function (the réduite of the cone f_c: $\Delta[f_c] = 0$) containing “all” the information:

- $q(n; k, \ell; \mathbb{N}^2) \approx f(k, \ell) \cdot \rho^n \cdot n^\alpha$ as $n \to \infty$
Potential theoretic tools

Counting numbers are caloric functions

- Asymptotics of numbers of quadrant walks (also with inhomogeneities)
 D’Arco, Lacivita & Mustapha '16
- Asymptotics in three quarters of plane
 Mustapha '16

Zero drift case: classical inequalities
Varopoulos ’99–’09

General principle: there is a canonical function (the réduit of the cone \(f_c \): \(\Delta[f_c] = 0 \)) containing “all” the information:

- \(q(n; k, \ell; \mathbb{N}^2) \approx f(k, \ell) \cdot \rho^n \cdot n^\alpha \) as \(n \to \infty \)
- \(\alpha = \) homogeneity degree of \(f_c \)
Potential theoretic tools

Counting numbers are caloric functions

- Asymptotics of numbers of quadrant walks (also with inhomogeneities)
 D’Arco, Lacivita & Mustapha ’16
- Asymptotics in three quarters of plane
 Mustapha ’16

Zero drift case: classical inequalities
Varopoulos ’99–’09

General principle: there is a canonical function (the réduite of the cone f_c: $\Delta[f_c] = 0$) containing “all” the information:

- $q(n; k, \ell; \mathbb{N}^2) \approx f(k, \ell) \cdot \rho^n \cdot n^\alpha$ as $n \to \infty$
- $\alpha = \text{homogeneity degree of } f_c$
- $f \sim f_c$ asymptotically
Potential theoretic tools

Counting numbers are caloric functions

- Asymptotics of numbers of quadrant walks (also with inhomogeneities)

 D’Arco, Lacivita & Mustapha ’16

- Asymptotics in three quarters of plane

 Mustapha ’16

Zero drift case: classical inequalities

Varopoulos ’99–’09

General principle: there is a canonical function (the réduite of the cone f_c: $\Delta[f_c] = 0$) containing “all” the information:

- $q(n; k, \ell; \mathbb{N}^2) \approx f(k, \ell) \cdot \rho^n \cdot n^\alpha$ as $n \to \infty$

- $\alpha = \text{homogeneity degree of } f_c$

- $f \sim f_c$ asymptotically

Non-zero drift case: Cramér’s transform & ongoing work

- Works if drift with ≤ 0 coordinates

- Ongoing work in the remaining cases

 Garbit, Mustapha & R.
Introduction & motivations

Applications in probability theory

Applications in combinatorics

Discrete harmonic functions in the quadrant
Functional equation & Tutte’s invariants

A functional equation reminiscent of the enumeration

- \(F(x, y) = \sum_{i,j \geq 1} f(i,j)x^{i-1}y^{j-1} \)
- \(K'(x, y) = xy\{\sum_{-1 \leq k, \ell \leq 1} p(k, \ell)x^{-k}y^{-\ell} - 1\} \)

Kernel functional equation:

\[
K'(x, y)F(x, y) =
K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0)
\]
Functional equation & Tutte’s invariants

A functional equation reminiscent of the enumeration

- $F(x, y) = \sum_{i,j \geq 1} f(i, j)x^{i-1}y^{j-1}$
- $K'(x, y) = xy\{\sum_{-1 \leq k, \ell \leq 1} p(k, \ell)x^{-k}y^{-\ell} - 1\}$
- **Kernel functional equation:**
 \[
 K'(x, y)F(x, y) = \quad K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0)
 \]

Definition of Tutte’s invariants

- Introduced to count q-colored triangulations & planar maps
 \(\text{Tutte ’73; Bernardi & Bousquet-Mélou ’11}\)
- Define X_0 & X_1 by $K'(X_0, y) = K'(X_1, y) = 0$
- Tutte’s invariant: function $I \in \mathbb{Q}[\![x]\!]$ such that $I(X_0) = I(X_1)$
A functional equation reminiscent of the enumeration

\[F(x, y) = \sum_{i,j \geq 1} f(i, j)x^{i-1}y^{j-1} \]
\[K'(x, y) = xy\{\sum_{-1 \leq k, \ell \leq 1} p(k, \ell)x^{-k}y^{-\ell} - 1\} \]
\[\text{Kernel functional equation:} \]
\[K'(x, y)F(x, y) = K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0) \]

Definition of Tutte’s invariants

- Introduced to count \(q \)-colored triangulations & planar maps
 - Tutte ’73; Bernardi & Bousquet-Mélou ’11
- Define \(X_0 \) & \(X_1 \) by \(K'(X_0, y) = K'(X_1, y) = 0 \)
- Tutte’s invariant: function \(I \in \mathbb{Q}[[x]] \) such that \(I(X_0) = I(X_1) \)

The sections \(K'(x, 0)F(x, 0) \) & \(K'(0, y)F(0, y) \) are invariants

- Evaluate the functional equation at \(X_0 \) & \(X_1 \)
- Make the difference of the two identities
Functional equation & Tutte’s invariants

A functional equation reminiscent of the enumeration

- $F(x, y) = \sum_{i,j \geq 1} f(i,j)x^{i-1}y^{j-1}$
- $K'(x, y) = xy\{\sum_{-1 \leq k, \ell \leq 1} p(k, \ell)x^{-k}y^{-\ell} - 1\}$
- **Kernel functional equation:**

 \[
 K'(x, y)F(x, y) = \\
 K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0)
 \]

Definition of Tutte’s invariants

- Introduced to count q-colored triangulations & planar maps

 \(\text{Tutte '73; Bernardi & Bousquet-Mélo '11}\)
- Define X_0 & X_1 by $K'(X_0, y) = K'(X_1, y) = 0$
- Tutte’s invariant: function $I \in \mathbb{Q}[[x]]$ such that $I(X_0) = I(X_1)$

The sections $K'(x, 0)F(x, 0)$ & $K'(0, y)F(0, y)$ are invariants

- Evaluate the functional equation at X_0 & X_1
- Make the difference of the two identities

Does this characterize the sections?
Tutte’s invariants & conformal mappings

A general theorem: uniqueness of positive harmonic functions

\[K'(x, 0)F(x, 0) = w(x), \text{ characterized by} \]

- Conformal mapping of a certain domain
- \(w(x) = w(\bar{x}) \)
- \(w(1) = \infty \)
- Same for \(K'(0, y)F(0, y) \)
Tutte’s invariants & conformal mappings

A general theorem: description of all harmonic functions

\[K'(x, 0)F(x, 0) = \text{Poly}(w(x)), \text{ charac. by} \]

- Conformal mapping of a certain domain
- \(w(x) = w(\bar{x}) \)
- \(w(1) = \infty \)
- Same for \(K'(0, y)F(0, y) \)

Question: How deep is this connection conformal maps/harmonic functions?
Tutte’s invariants & conformal mappings

A general theorem: description of all harmonic functions

\[K'(x, 0)F(x, 0) = \text{Poly}(w(x)), \text{ charac. by} \]

- Conformal mapping of a certain domain
- \(w(x) = w(\overline{x}) \)
- \(w(1) = \infty \)
- Same for \(K'(0, y)F(0, y) \)

Going back to the SRW

\[K'(x, 0)F(x, 0) = \frac{x}{4(1-x)^2}, \text{ characterized by} \]

- Conformal mapping of the unit disc
- \(w(e^{i\theta}) = w(e^{-i\theta}) \)
- \(w(1) = \infty \)
- Same for \(K'(0, y)F(0, y) = \frac{y}{4(1-y)^2} \)
Tutte’s invariants & conformal mappings

A general theorem: description of all harmonic functions

\[K'(x, 0) F(x, 0) = \text{Poly}(w(x)), \] charac. by

- Conformal mapping of a certain domain
 - \(w(x) = w(\overline{x}) \)
 - \(w(1) = \infty \)
 - Same for \(K'(0, y) F(0, y) \)

Going back to the SRW

\[K'(x, 0) F(x, 0) = \frac{x}{4(1-x)^2}, \] characterized by

- Conformal mapping of the unit disc
 - \(w(e^{i\theta}) = w(e^{-i\theta}) \)
 - \(w(1) = \infty \)
 - Same for \(K'(0, y) F(0, y) = \frac{y}{4(1-y)^2} \)

Question

How deep is this connection conformal maps/harmonic functions?
THANK YOU
Example: the SRW

A product-form generating function

\[f(i, j) = i \cdot j \implies F(x, y) = \sum_{i, j \geq 1} i \cdot j \cdot x^{i-1} y^{j-1} = \frac{1}{(1-x)^2(1-y)^2} \]

Kernel: \[K'(x, y) = xy \left\{ \frac{x}{4} + \frac{1}{4x} + \frac{y}{4} + \frac{1}{4y} - 1 \right\} = \frac{y(x-1)^2}{4} + \frac{x(y-1)^2}{4} \]
Example: the SRW

A product-form generating function

\[f(i, j) = i \cdot j \implies F(x, y) = \sum_{i,j \geq 1} i \cdot j \cdot x^{i-1} y^{j-1} = \frac{1}{(1-x)^2(1-y)^2} \]

Kernel: \(K'(x, y) = xy\left\{\frac{x}{4} + \frac{1}{4x} + \frac{y}{4} + \frac{1}{4y} - 1\right\} = \frac{y(x-1)^2}{4} + \frac{x(y-1)^2}{4} \)

Verification of the functional equation

\[K'(x, y)F(x, y) = K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0) \]
Example: the SRW

A product-form generating function

\[f(i, j) = i \cdot j \implies F(x, y) = \sum_{i,j \geq 1} i \cdot j \cdot x^{i-1} y^{j-1} = \frac{1}{(1-x)^2(1-y)^2} \]

Kernel: \(K'(x, y) = xy \left\{ \frac{x}{4} + \frac{1}{4x} + \frac{y}{4} + \frac{1}{4y} - 1 \right\} = \frac{y(x-1)^2}{4} + \frac{x(y-1)^2}{4} \)

Verification of the functional equation

\[K'(x, y)F(x, y) - K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0) \]
\[= \frac{x}{4} \times \frac{1}{(1-x)^2} + \frac{y}{4} \times \frac{1}{(1-y)^2} - 0 \times 1 \]
Example: the SRW

A product-form generating function

\[f(i, j) = i \cdot j \implies F(x, y) = \sum_{i, j \geq 1} i \cdot j \cdot x^{i-1} y^{j-1} = \frac{1}{(1-x)^2(1-y)^2} \]

Kernel: \(K'(x, y) = xy \left\{ \frac{x}{4} + \frac{1}{4x} + \frac{y}{4} + \frac{1}{4y} - 1 \right\} = \frac{y(x-1)^2}{4} + \frac{x(y-1)^2}{4} \)

Verification of the functional equation

\[K'(x, y)F(x, y) = K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0) \]
\[= \frac{x}{4} \times \frac{1}{(1-x)^2} + \frac{y}{4} \times \frac{1}{(1-y)^2} - 0 \times 1 \]

Tutte’s invariants

\[I(X_0) = I(X_1) \xrightarrow{X_0X_1=1} I(x) = I\left(\frac{1}{x}\right) \implies I \text{ function of } x + \frac{1}{x} \]
\[K'(x, 0)F(x, 0) = \frac{x}{4} \frac{1}{(1-x)^2} = \frac{1}{4} \frac{1}{x+\frac{1}{x}-2} \text{ is an invariant} \]
Example: the SRW

A product-form generating function

\[f(i, j) = i \cdot j \implies F(x, y) = \sum_{i,j\geq 1} i \cdot j \cdot x^{i-1} y^{j-1} = \frac{1}{(1-x)^2(1-y)^2} \]

Kernel: \(K'(x, y) = xy\left\{ \frac{x}{4} + \frac{1}{4x} + \frac{y}{4} + \frac{1}{4y} - 1 \right\} = \frac{y(x-1)^2}{4} + \frac{x(y-1)^2}{4} \)

Verification of the functional equation

\[K'(x, y)F(x, y) = K'(x, 0)F(x, 0) + K'(0, y)F(0, y) - K'(0, 0)F(0, 0) \]
\[= \frac{x}{4} \times \frac{1}{(1-x)^2} + \frac{y}{4} \times \frac{1}{(1-y)^2} - 0 \times 1 \]

Tutte's invariants

\[I(X_0) = I(X_1) \xrightarrow{X_0X_1=1} I(x) = I\left(\frac{1}{x}\right) \implies I \text{ function of } x + \frac{1}{x} \]
\[K'(x, 0)F(x, 0) = \frac{x}{4} \times \frac{1}{(1-x)^2} = \frac{1}{4} \times \frac{1}{x+\frac{1}{x}-2} \text{ is an invariant} \]

Why this function of \(x + \frac{1}{x} \)?

- Of order 1 in \(x + \frac{1}{x} \) \(\sim \) Minimality (conformal mappings)
- \(F(1, 0) = \infty \sim \) Liouville's theorem