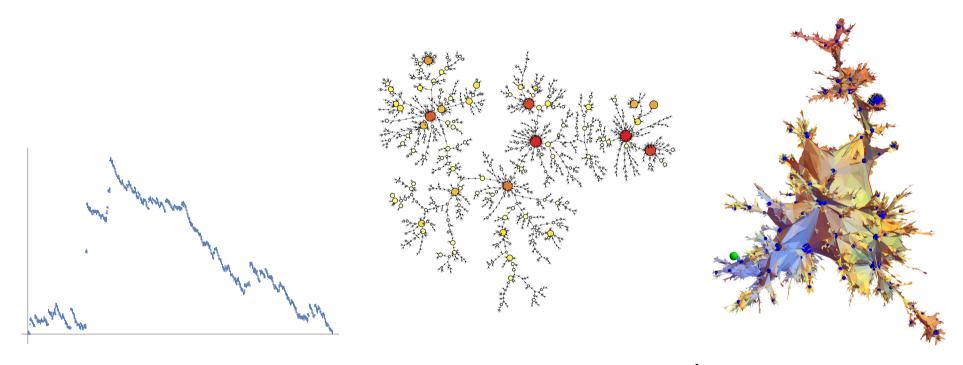
# Marches, arbres et cartes aléatoires ... avec des grands degrés

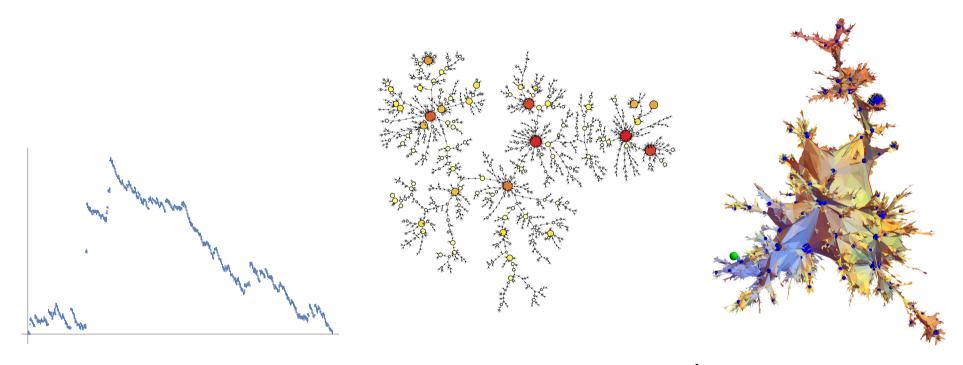


Nicolas Curien (Univ. Paris Saclay<sup>†</sup>, IUF)

avec O. Bernardi, J. Bertoin, (T. Budd)<sup>2</sup>, T. Hutchcroft, (I. Kortchemski)<sup>3</sup>, J.F. Le Gall, C. Marzouk, G. Miermont, A. Nachmias...

Journée Neveu, 2017

# Marches, arbres et cartes aléatoires ... avec des grands degrés



Nicolas Curien (Univ. Paris Saclay<sup>†</sup>, IUF)

avec O. Bernardi, J. Bertoin, (T. Budd)<sup>2</sup>, T. Hutchcroft, (I. Kortchemski)<sup>3</sup>, J.F. Le Gall, C. Marzouk, G. Miermont, A. Nachmias...

Journée Neveu, 2017







Grees

Maps





#### Brownian

#### Stable







#### Augmented trees





## Marches aléatoires



#### Marches aléatoires

Soit  $\mathbf{p} = (p_k)$  une loi de probabilité sur  $\{-1, 0, 1, 2, ...\}$  centrée et satisfaisant l'asymptotique

$$p_k \sim_{k \to \infty} c \cdot k^{-a-1}$$
, pour  $a > 1$ .

On considère (S) la marche aléatoire associée avec pas i.i.d. associée et son excursion positive  $(S_i)_{0 \le i \le \theta}$  avec  $\theta = \inf\{i \ge 0 : S_i < 0\}$ . Le pour toute excursion  $(x_i)$  on a

$$\mathbb{P}\Big((S_i)_{0\leqslant i\leqslant \theta}=(x_i)_{0\leqslant i\leqslant n}\Big)=\prod_{i=1}^n p_{\Delta x_i}.$$



#### Marches aléatoires

Soit  $\mathbf{p} = (p_k)$  une loi de probabilité sur  $\{-1, 0, 1, 2, ...\}$  centrée  $^2$  et satisfaisant l'asymptotique

$$p_k \sim_{k \to \infty} c \cdot k^{-a-1}$$
, pour  $a > 1$ .

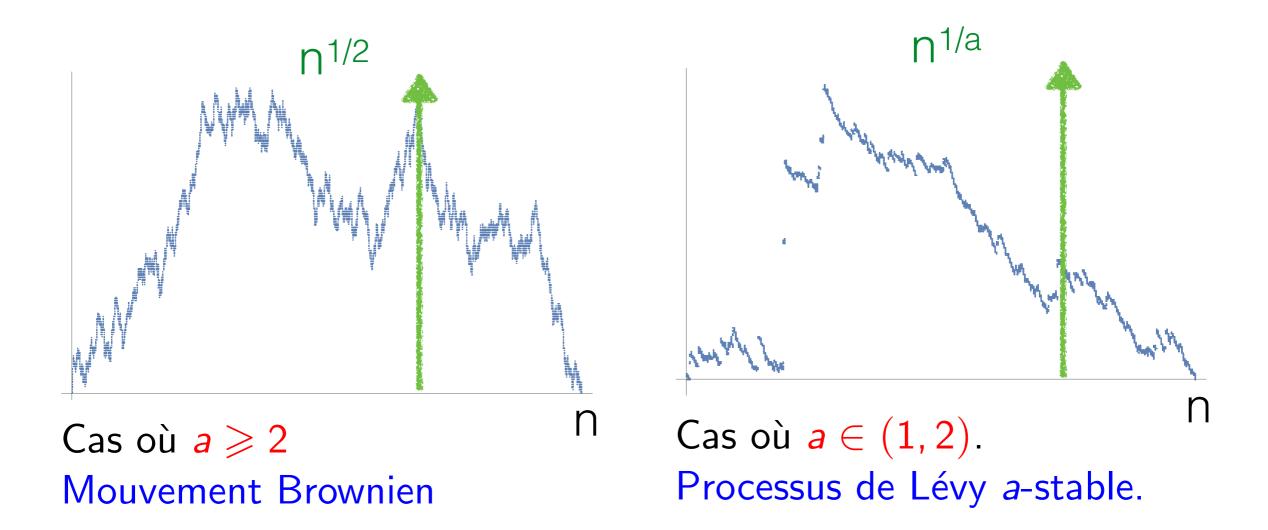
On considère (S) la marche aléatoire associée avec pas i.i.d. associée et son excursion positive  $(S_i)_{0 \le i \le \theta}$  avec  $\theta = \inf\{i \ge 0 : S_i < 0\}$ . Le pour toute excursion  $(x_i)$  on a

$$\mathbb{P}\Big((S_i)_{0\leqslant i\leqslant \theta}=(x_i)_{0\leqslant i\leqslant n}\Big)=\prod_{i=1}^n p_{\Delta x_i}.$$



#### Fremiers dessins

On a des comportements différents (pour les grandes excursions) :



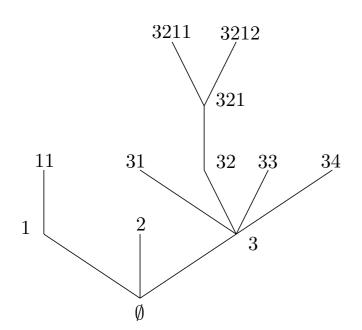


## Arbres aléatoires



#### Arbres de Galton-Watson

Avec les mêmes hypothèses sur  $\mathbf{p}$  on considère un arbre aléatoire plan T dit de  $\mathbf{p}$ -BGW de loi donnée par



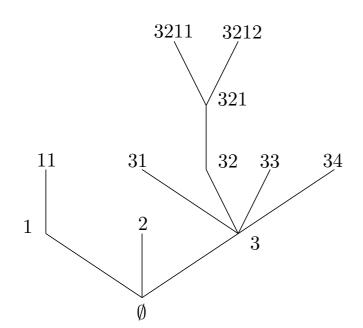
$$\mathbb{P}(T=\tau)=\prod_{u\in\tau}p_{k_u}$$

Un arbre plan  $\tau$ , les nombres d'enfants sont notés  $\{k_u : u \in \tau\}$ .



### Arbres de Galton-Watson

Avec les mêmes hypothèses  $^3$  sur  $\mathbf{p}$  on considère un arbre aléatoire plan T dit de  $\mathbf{p}$ -BGW de loi donnée par



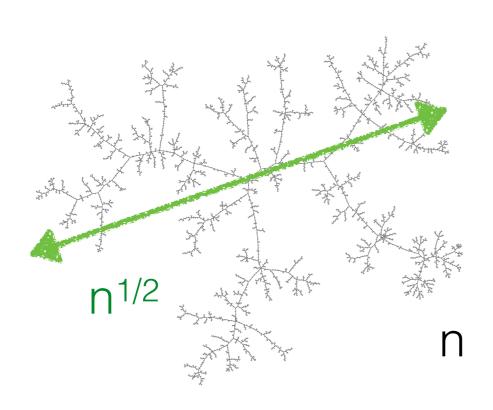
$$\mathbb{P}\Big(T=\tau\Big)=\prod_{u\in\tau}p_{k_u}$$

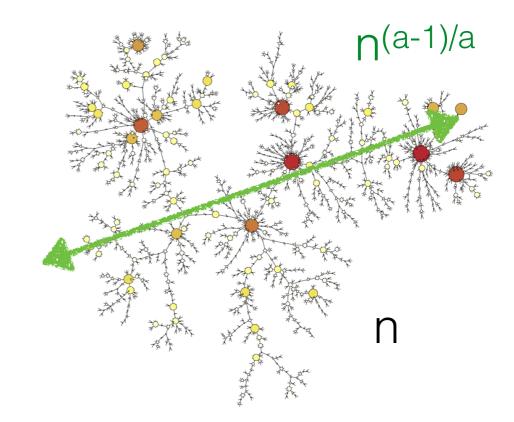
Un arbre plan  $\tau$ , les nombres d'enfants sont notés  $\{k_u : u \in \tau\}$ .



#### D'autres dessins

Ici aussi, des comportements géométriques très différents en fonction de *a* :





Cas où  $a \ge 2$ Arbre Brownien (Aldous)

Cas où  $a \in (1, 2)$ . Arbre a-stable (Duquesne, Le Gall, Le Jan).



#### Des arbres aux marches

Dépendant d'un procédé d'exploration :

- parcours en profondeur,
- parcours en largeur,
- exploration "uniforme",



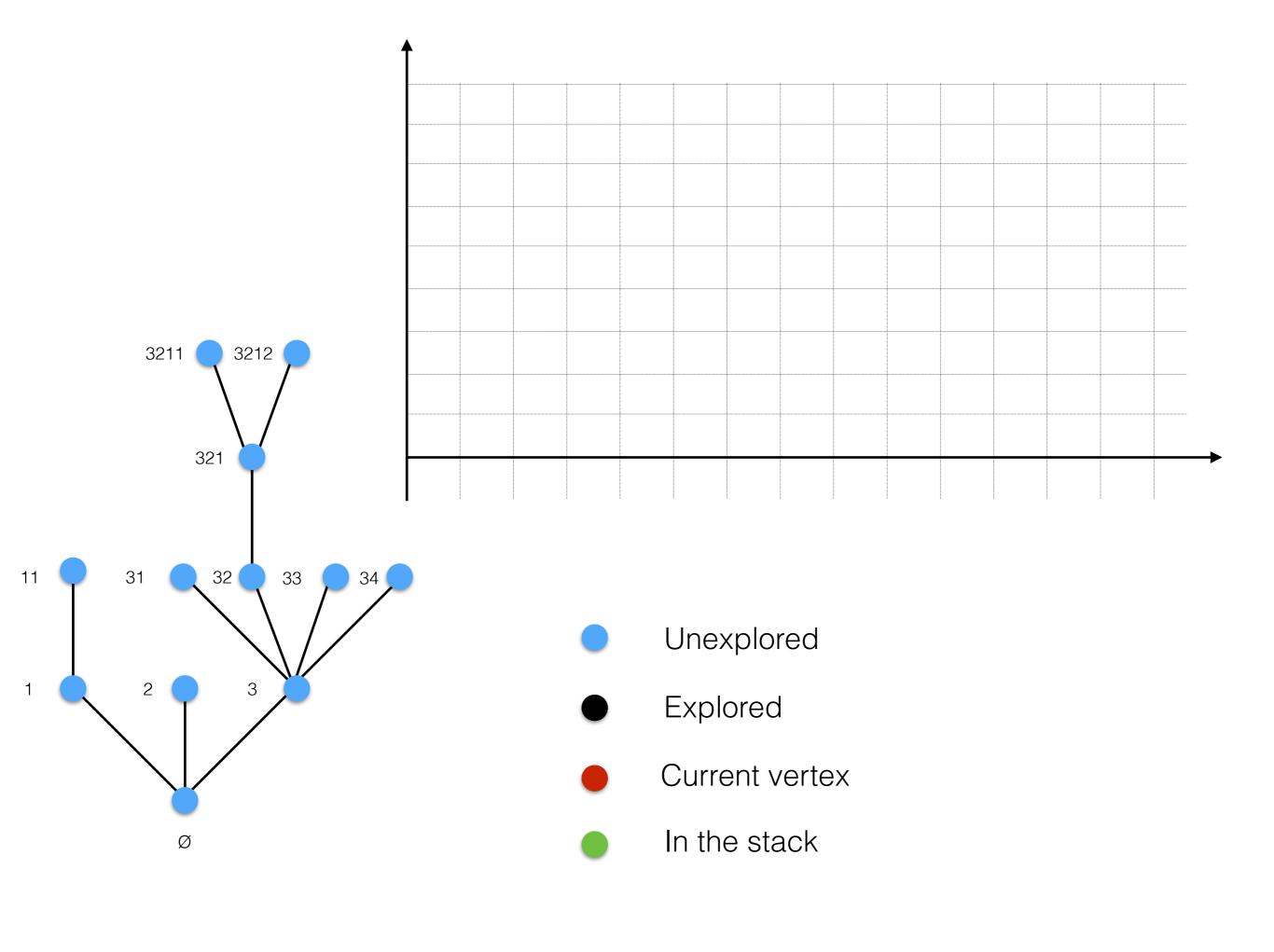
#### Des arbres aux marches

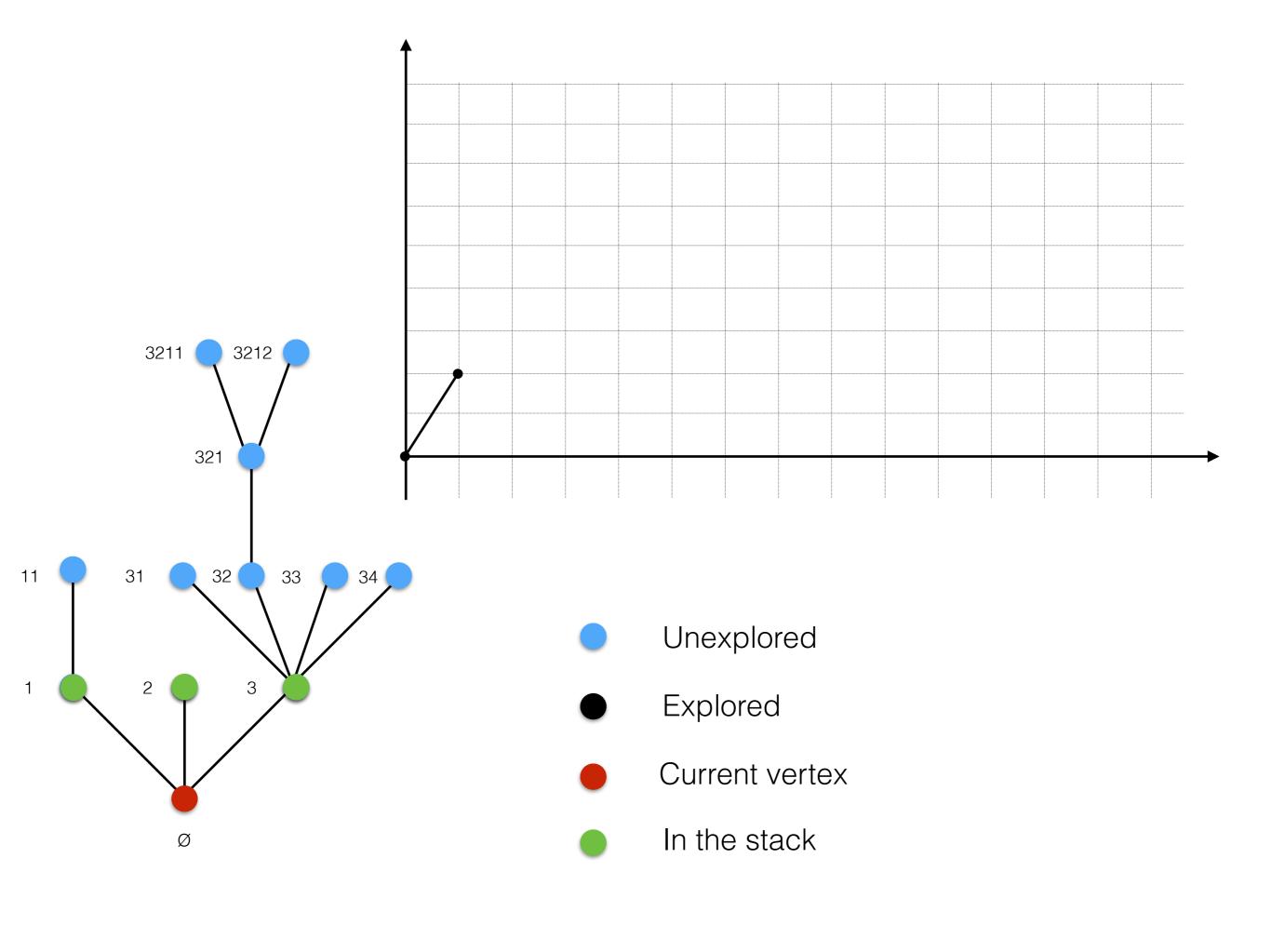
Dépendant d'un procédé d'exploration :

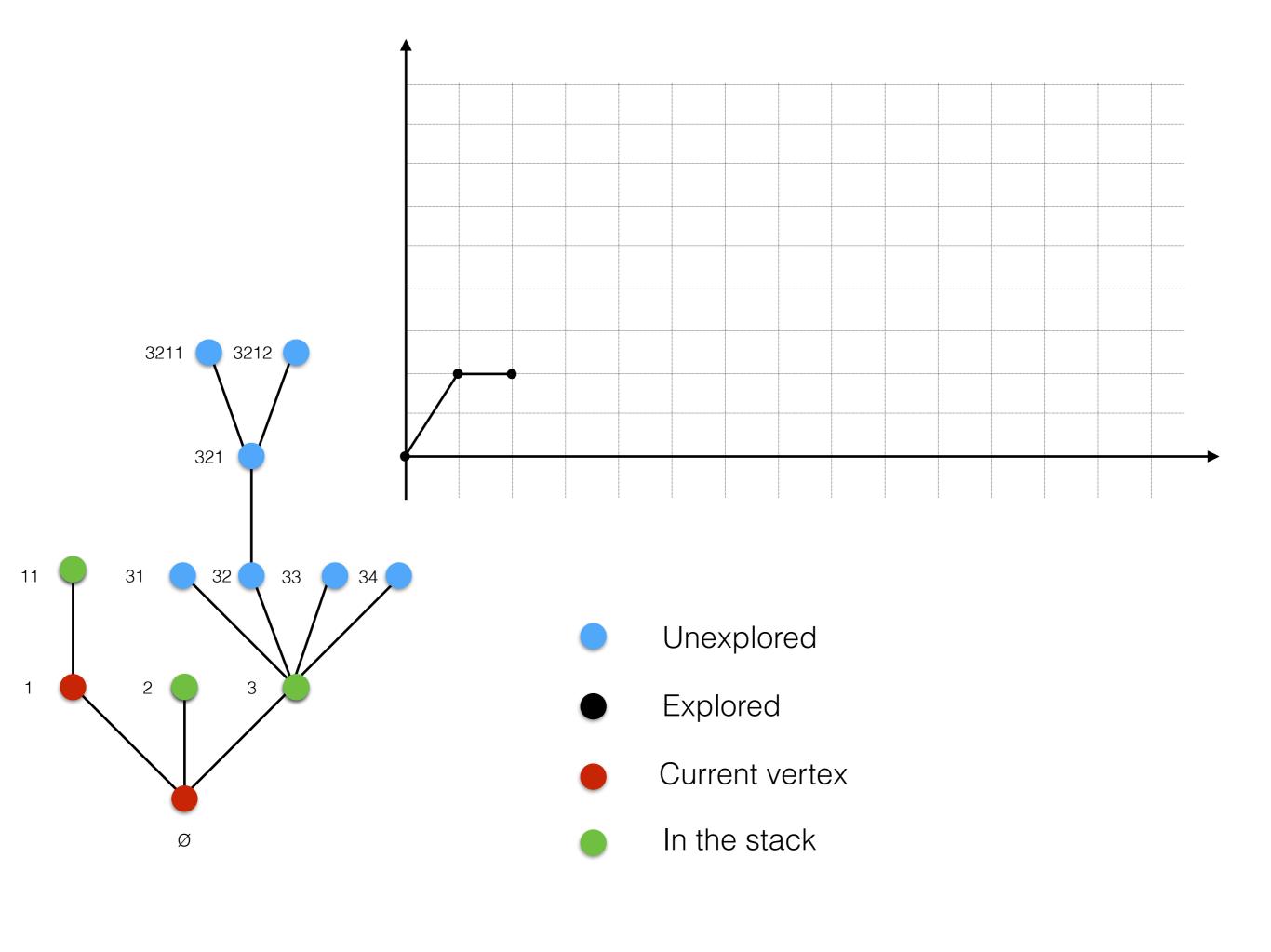
- parcours en profondeur,
- parcours en largeur,
- exploration "uniforme",

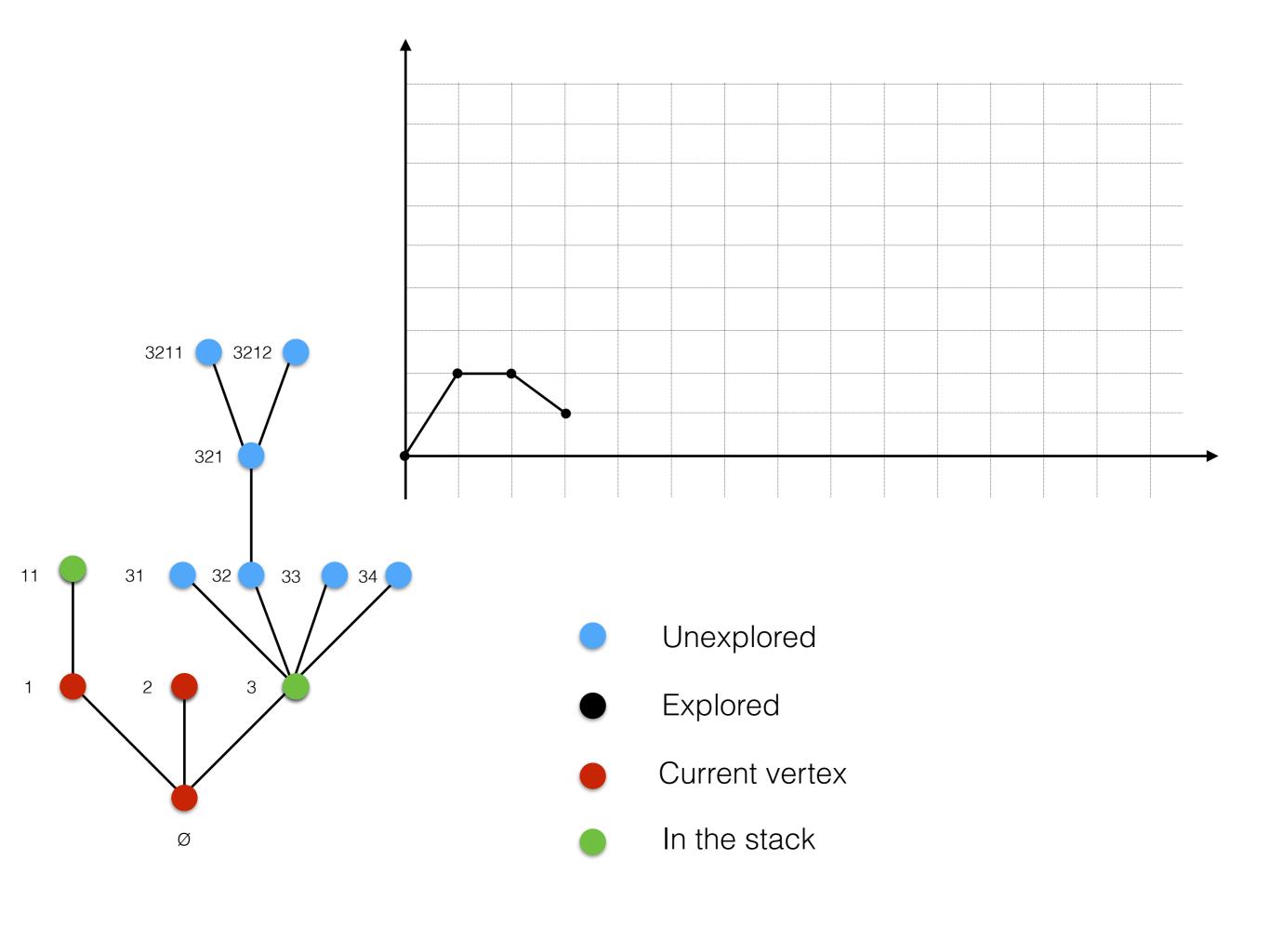
Durant l'exploration on enregistre le nombre de sommets "en mémoire" à visiter ultérieurement (moins 1). L'exploration s'arrête lorsqu'il n'y a plus de sommets à visiter.

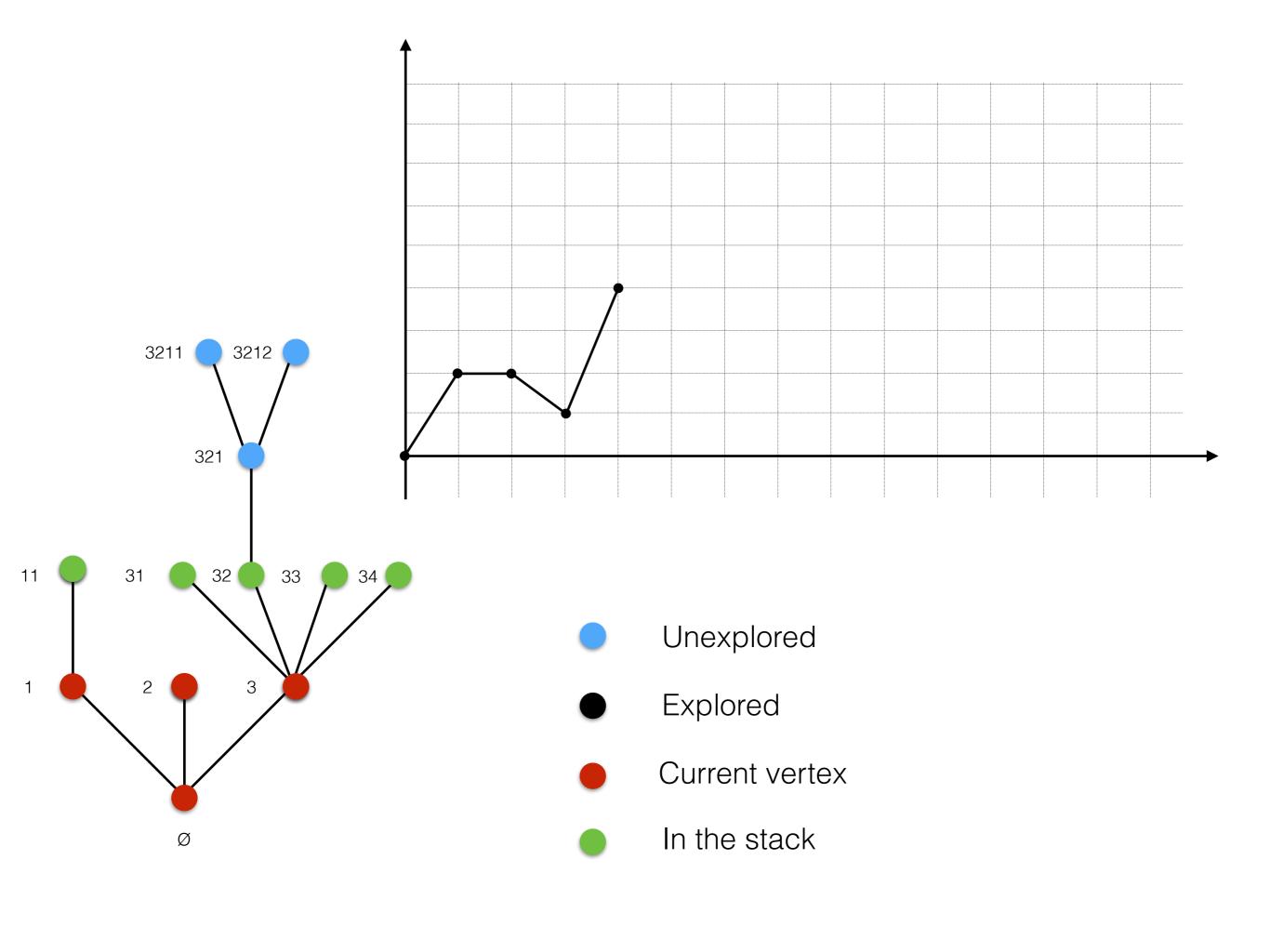


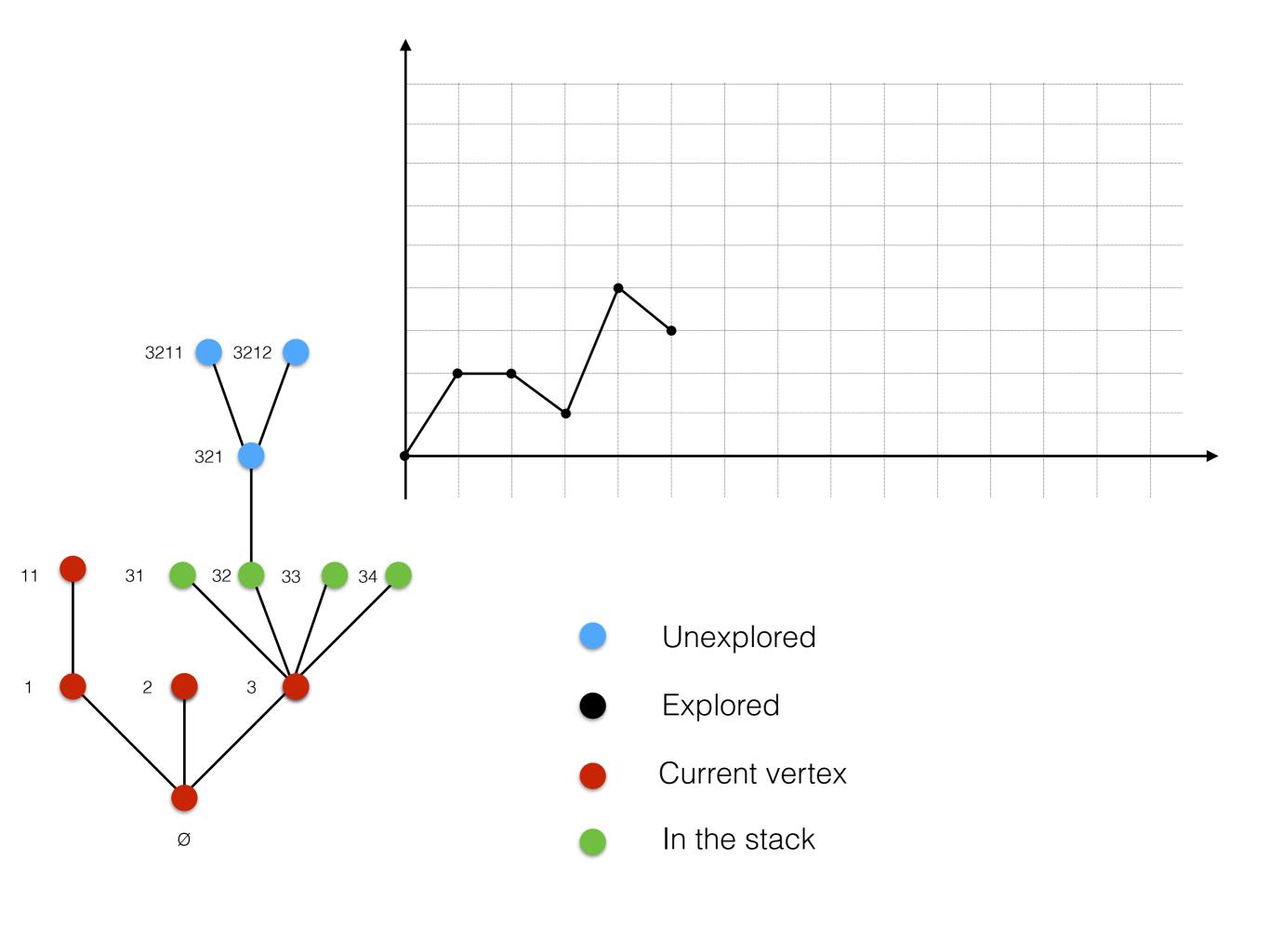


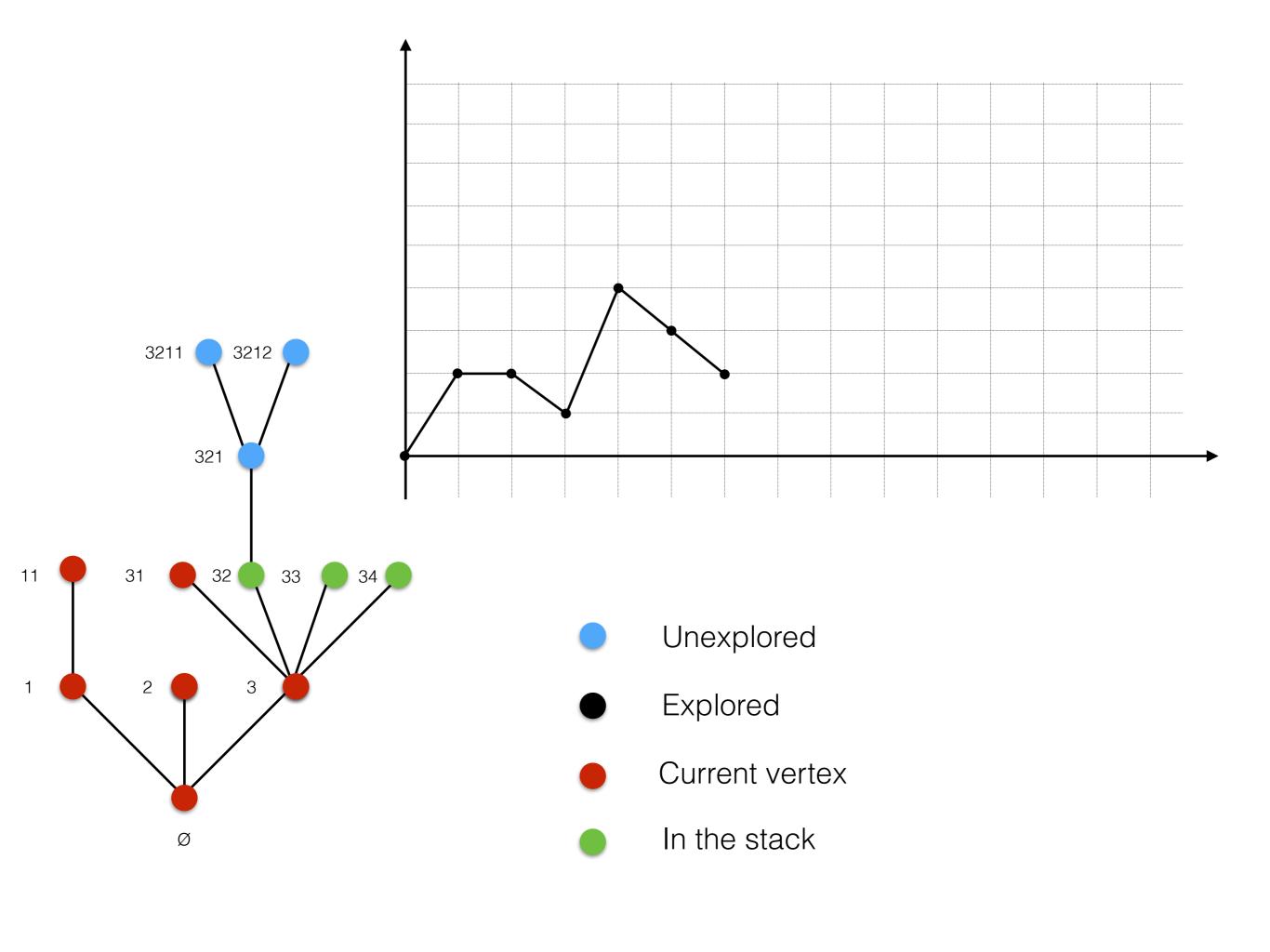


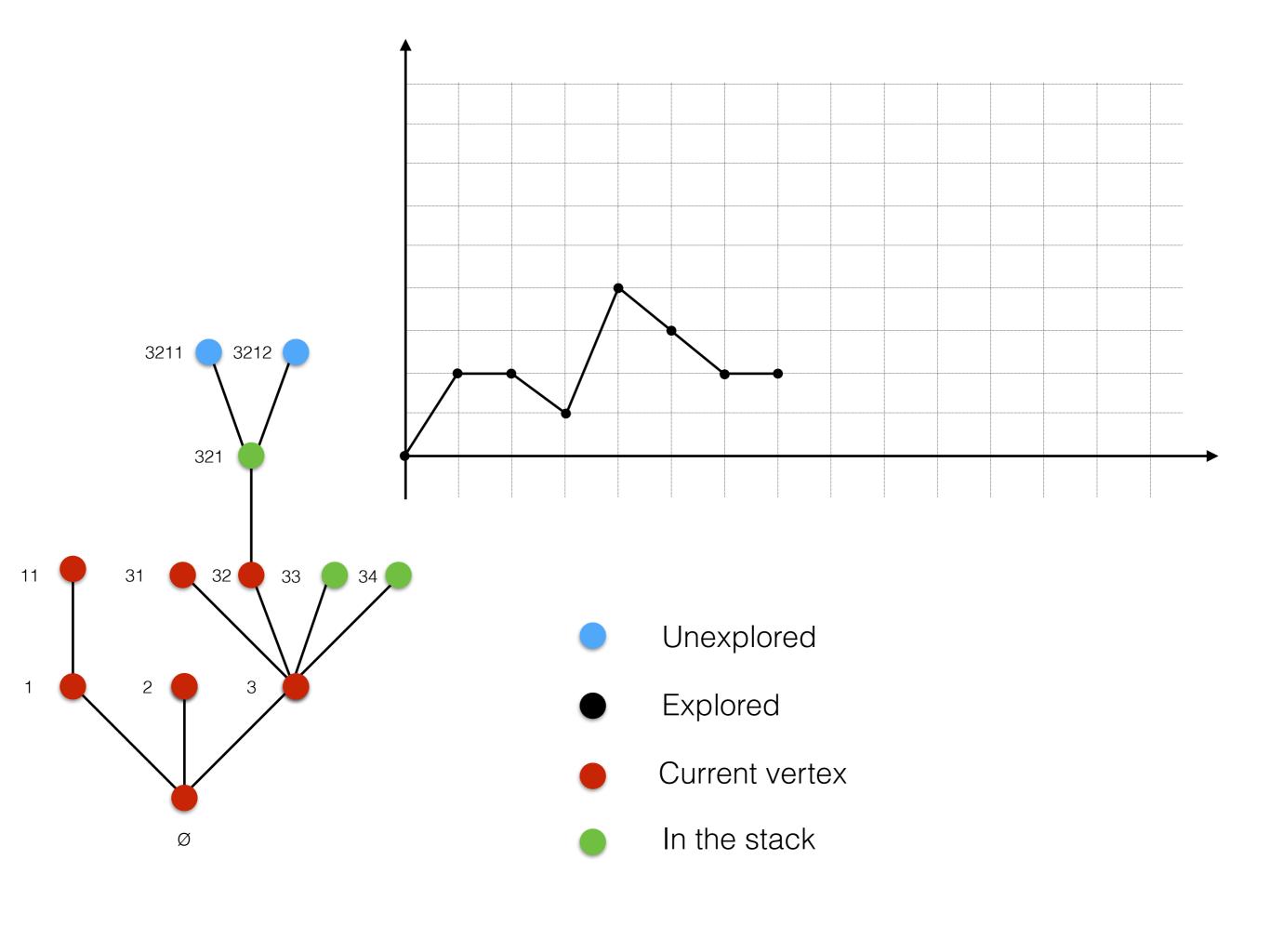


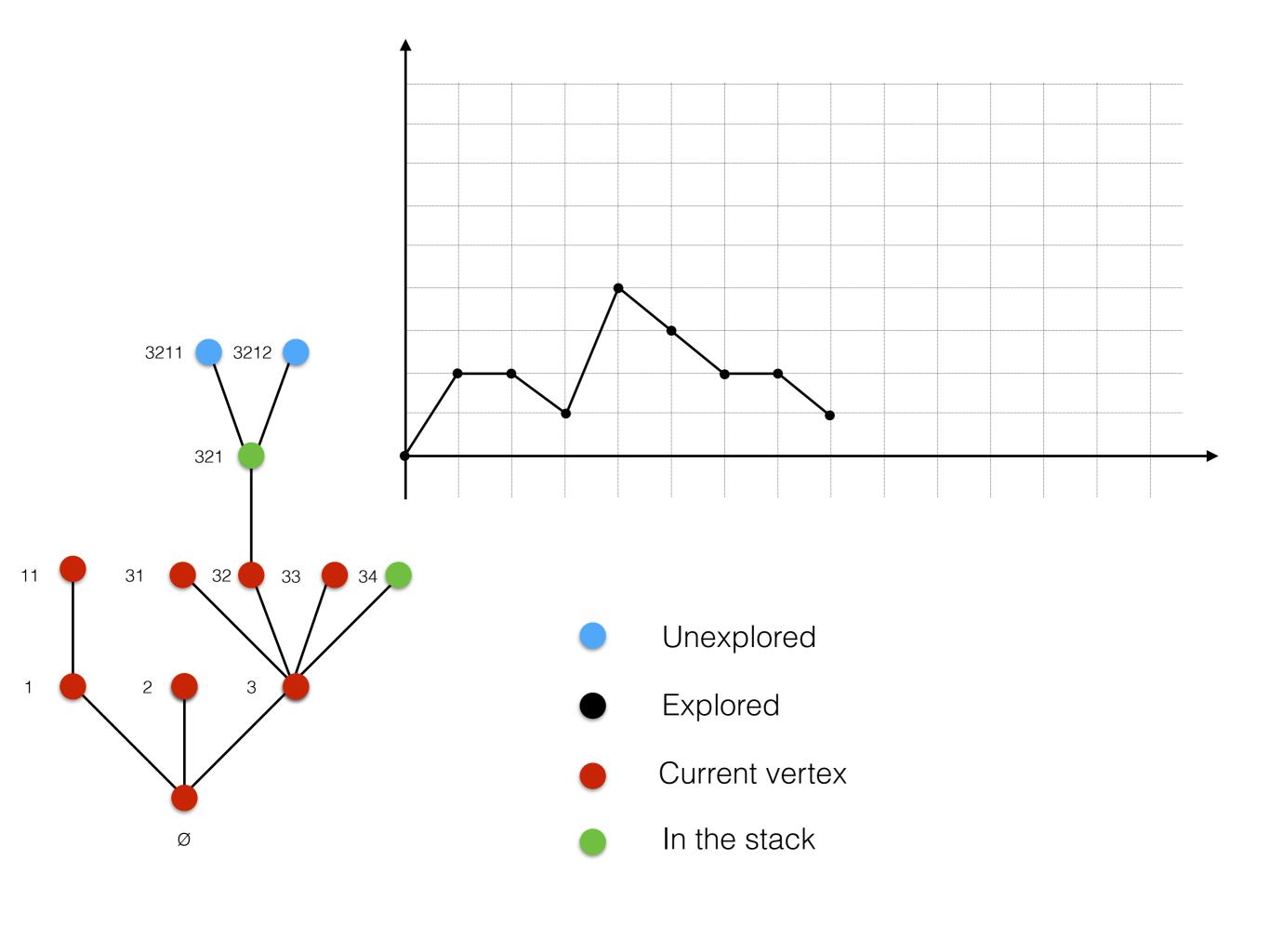


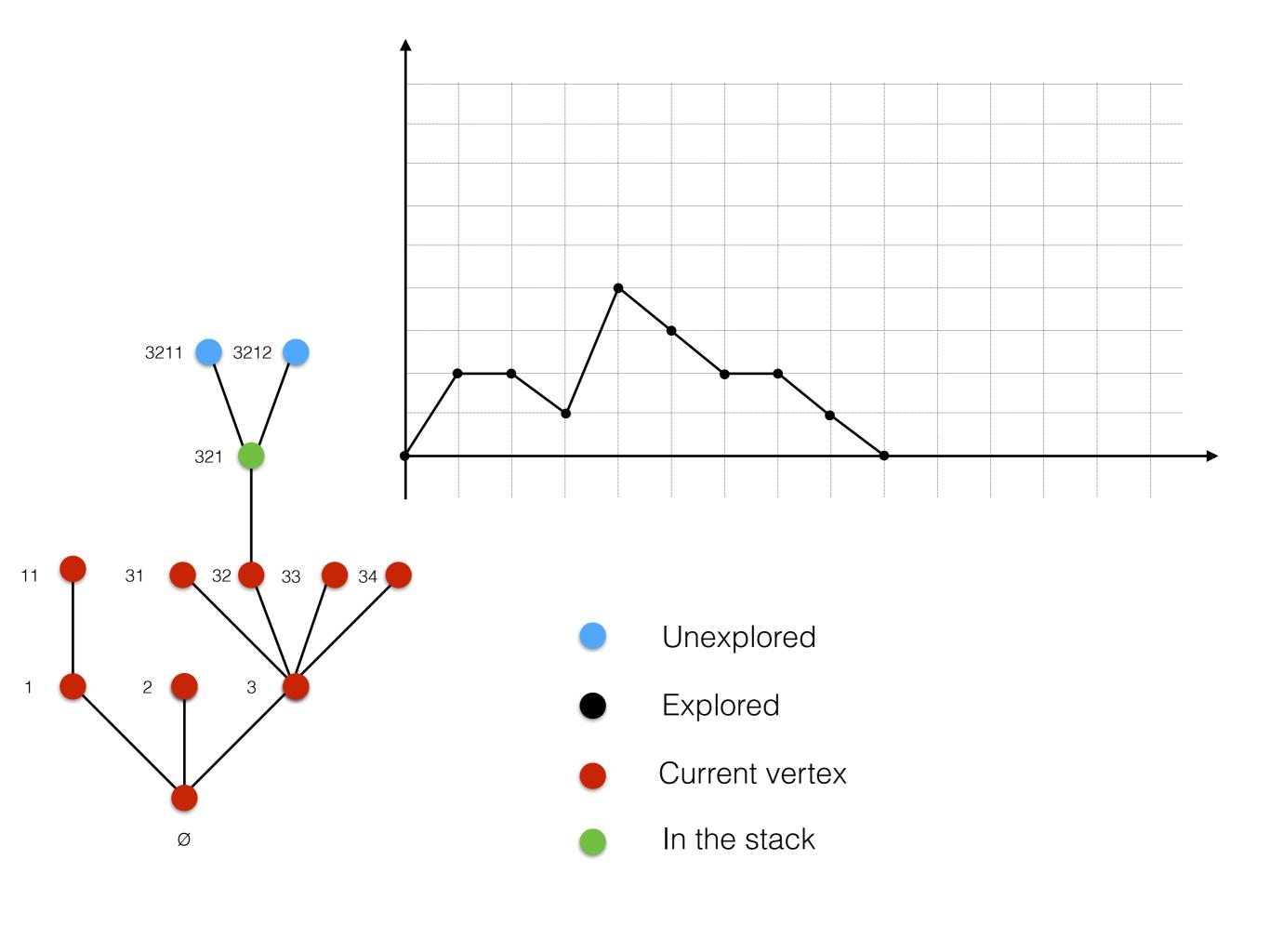


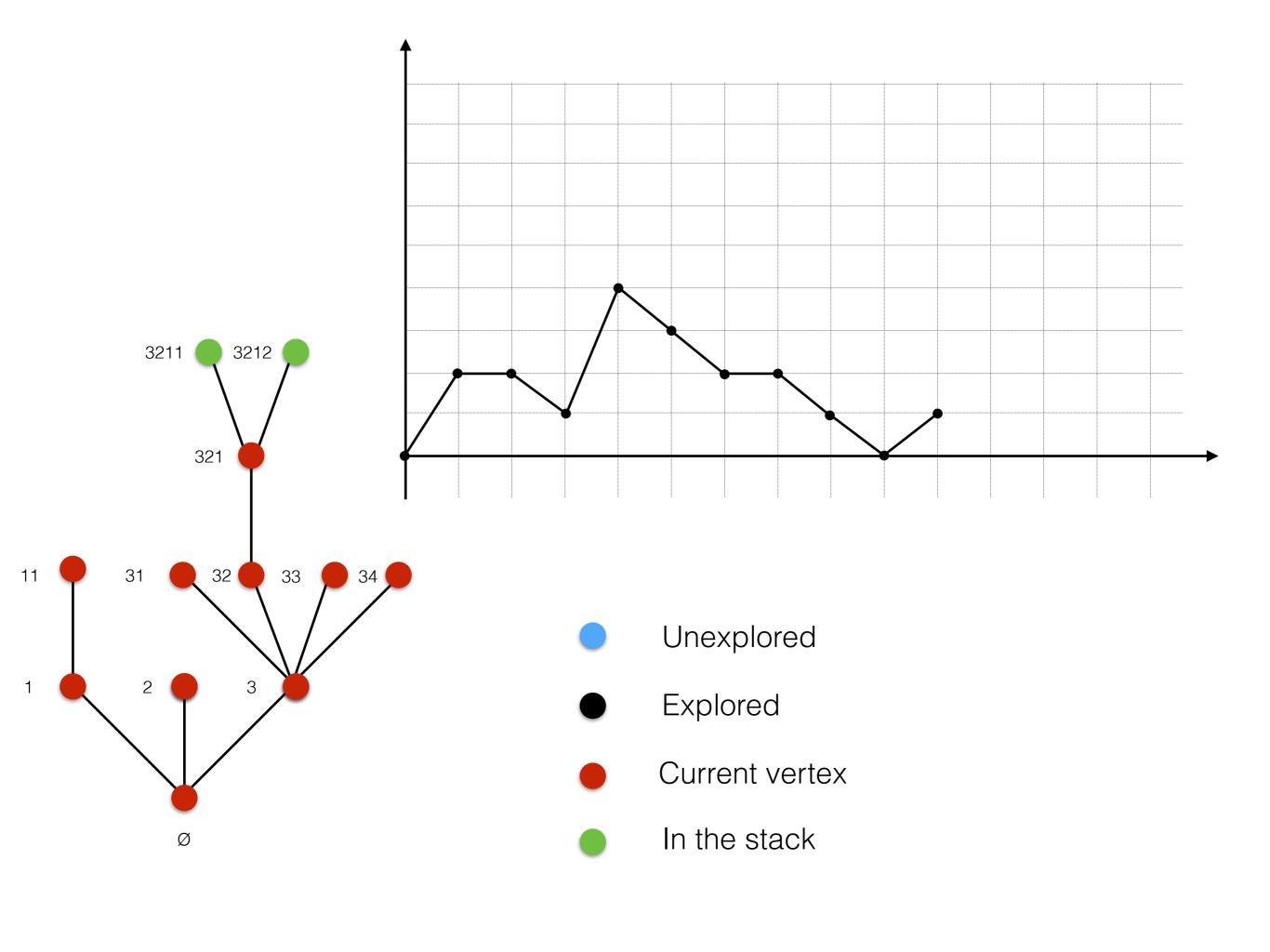


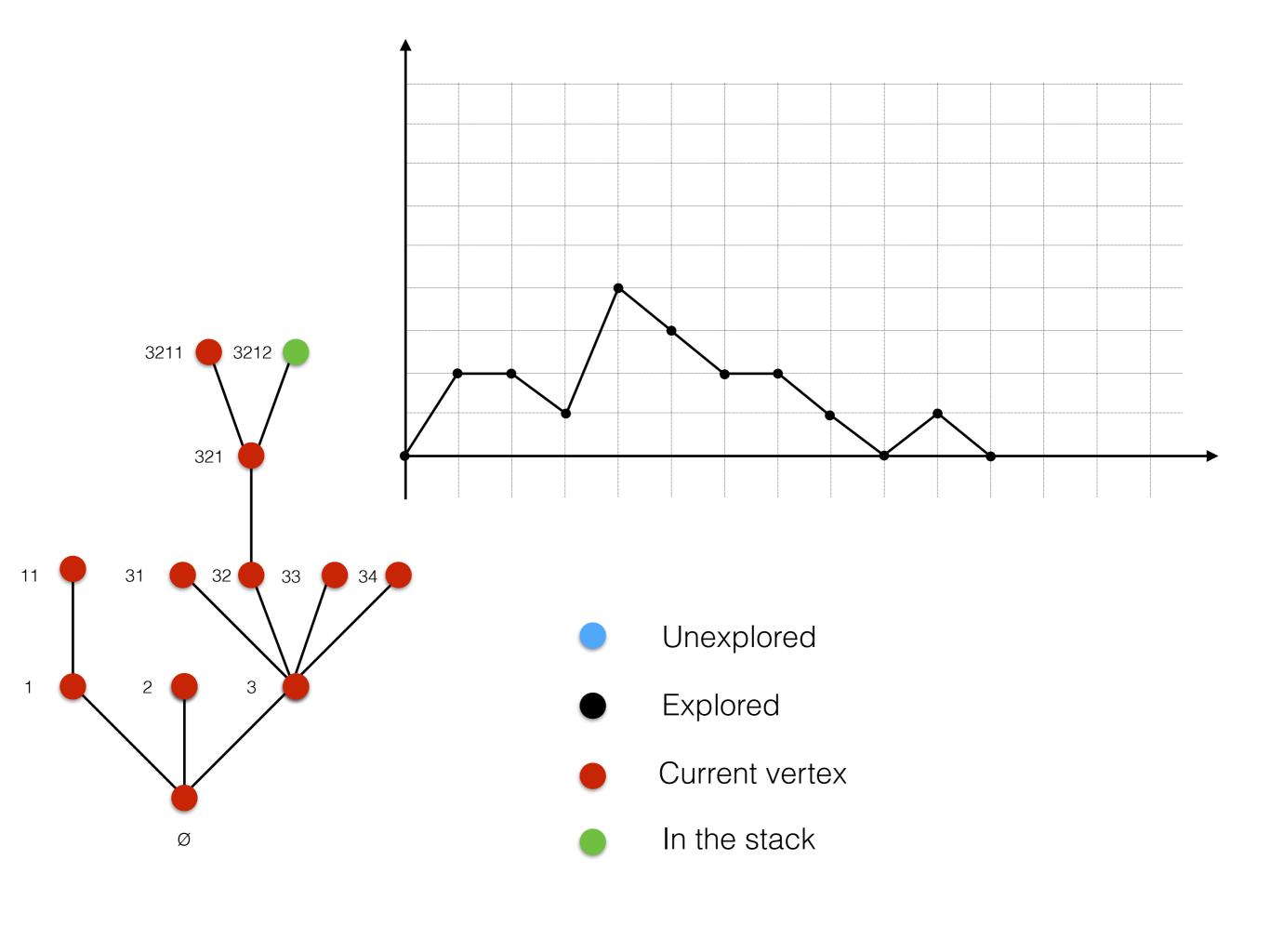


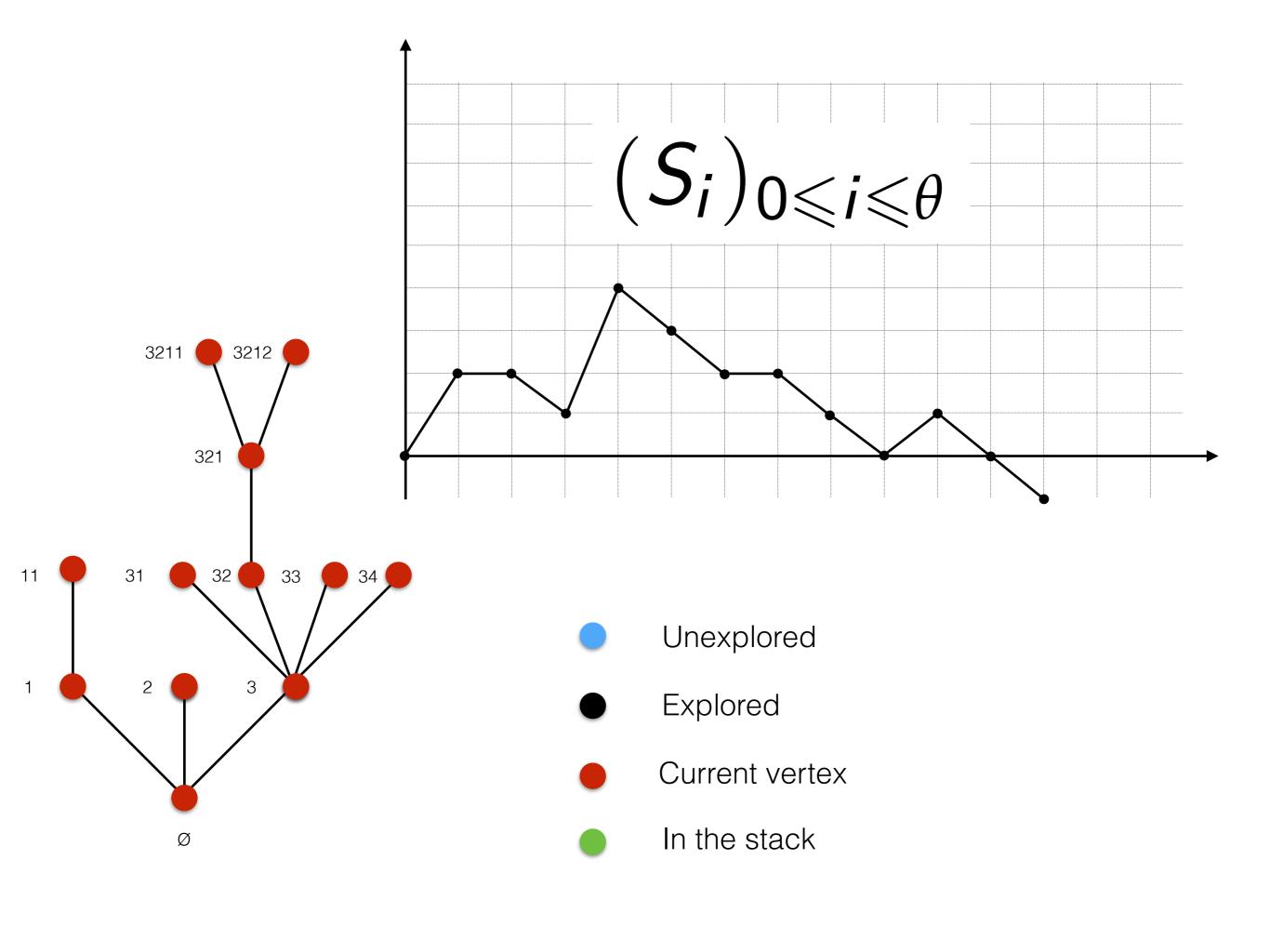












## Des arbres augmentés



#### Les looptrees

Si  $\tau$  est un arbre plan alors  $\mathsf{Loop}(\tau)$  est son looptree :

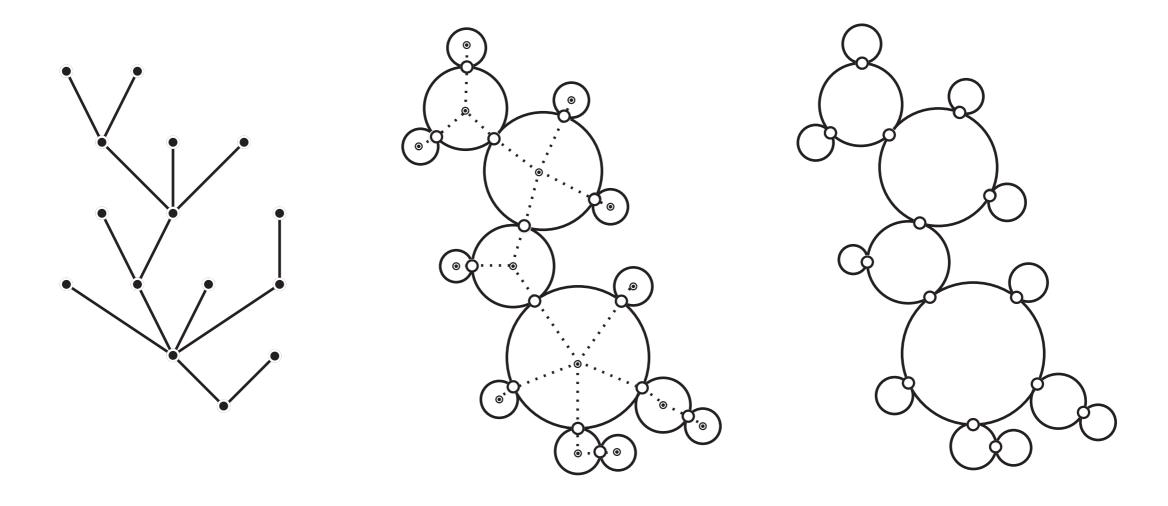
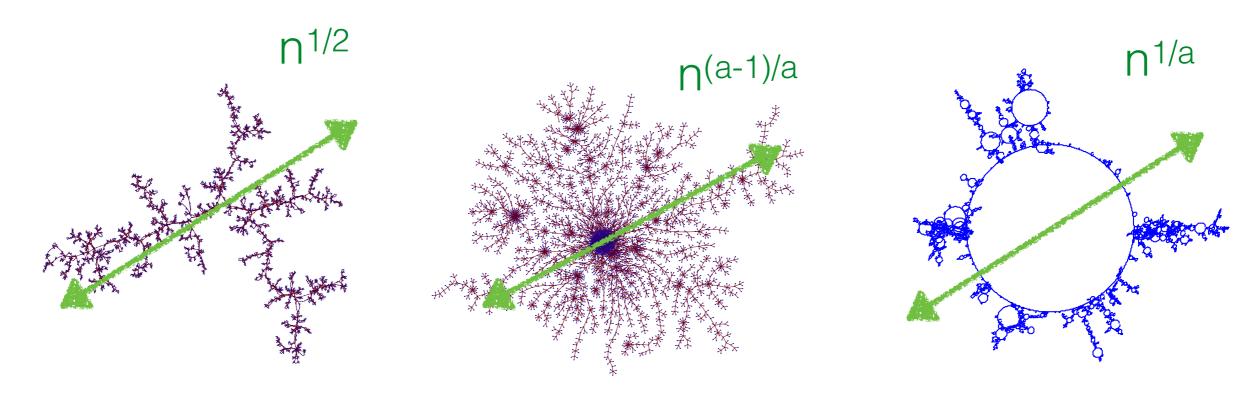


Figure – Un arbre et son looptree



#### Encore des dessins (Z)

Ici aussi, des comportements géométriques très différents en fonction de *a* :



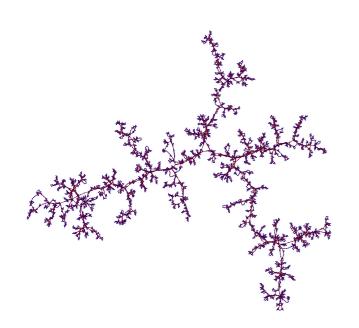
Cas où  $a \ge 2$   $\rightarrow$  Arbre Brownien

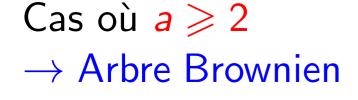
Cas où  $a \in (1, 2)$ Looptrees a-stable (C., Kortchemski).

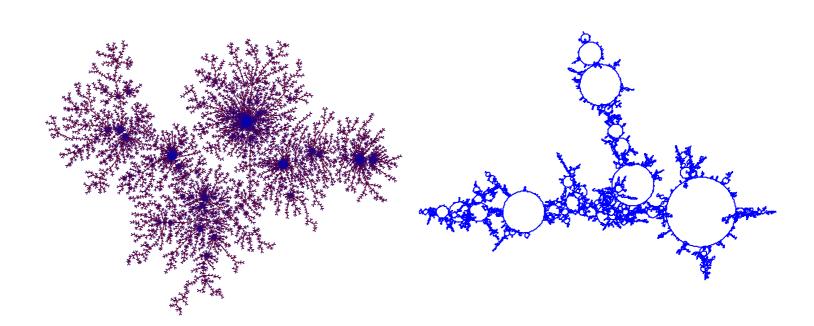


#### Encore des dessins (2)

Ici aussi, des comportements géométriques très différents en fonction de *a* :





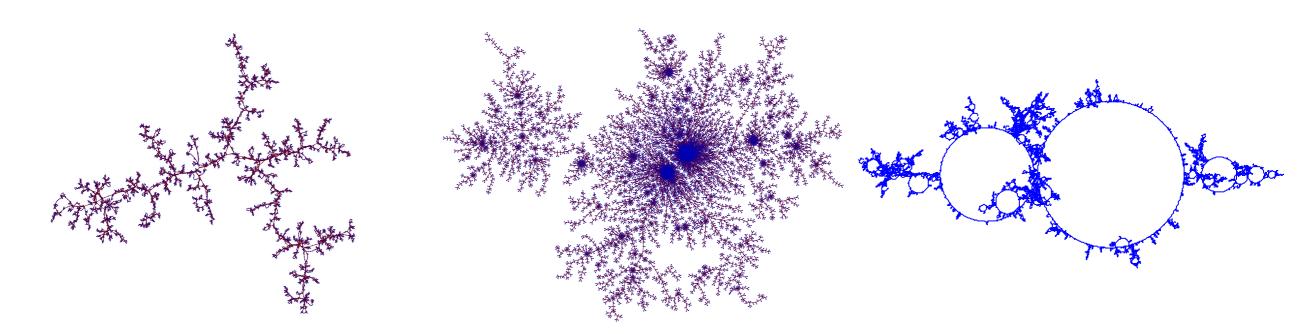


Cas où  $a \in (1, 2)$ Looptrees a-stable (C., Kortchemski).



#### Encore des dessins (2)

Ici aussi, des comportements géométriques très différents en fonction de *a* :



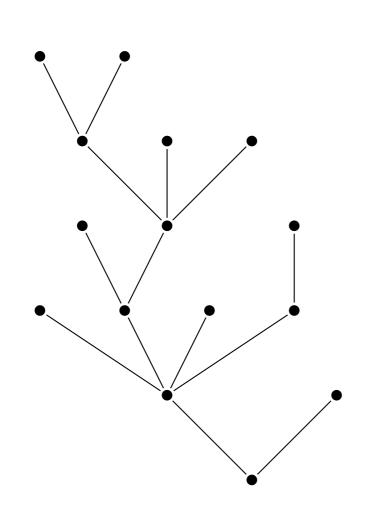
Cas où  $a \ge 2$   $\rightarrow$  Arbre Brownien

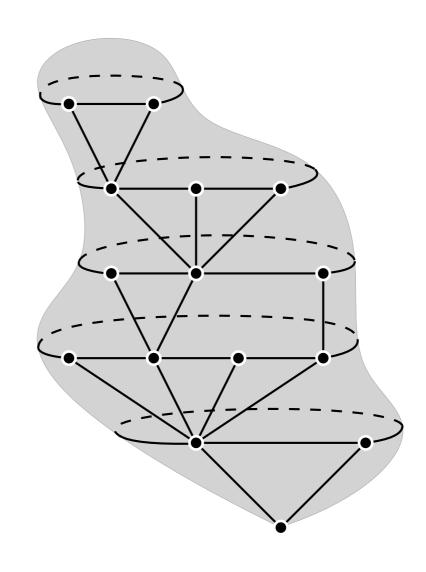
Cas où  $a \in (1, 2)$ Looptrees a-stable (C., Kortchemski).



#### Les cartes causales

Si  $\tau$  est un arbre plan on note Causal $(\tau)$  le graphe formé par l'ajout des connexions horizontales :







#### Encore des dessins (3)

On commence par  $a \ge 2$ 

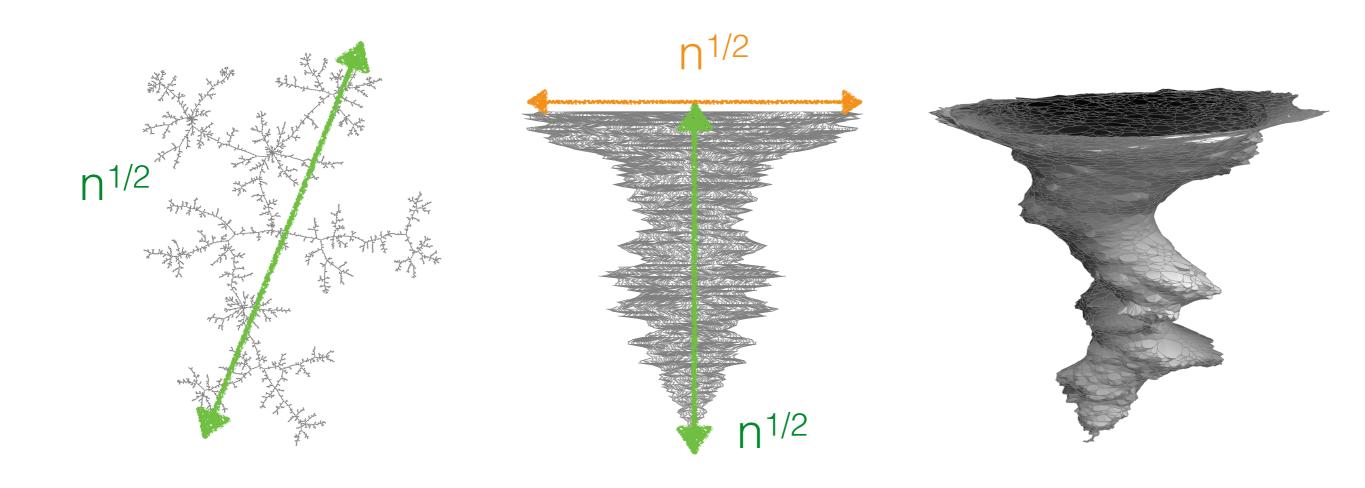


Figure – Un grand arbre (tronqué), la représentation en hauteur et la géométrie causale associée



#### Encore des dessins (3)

Ici a = 1.8

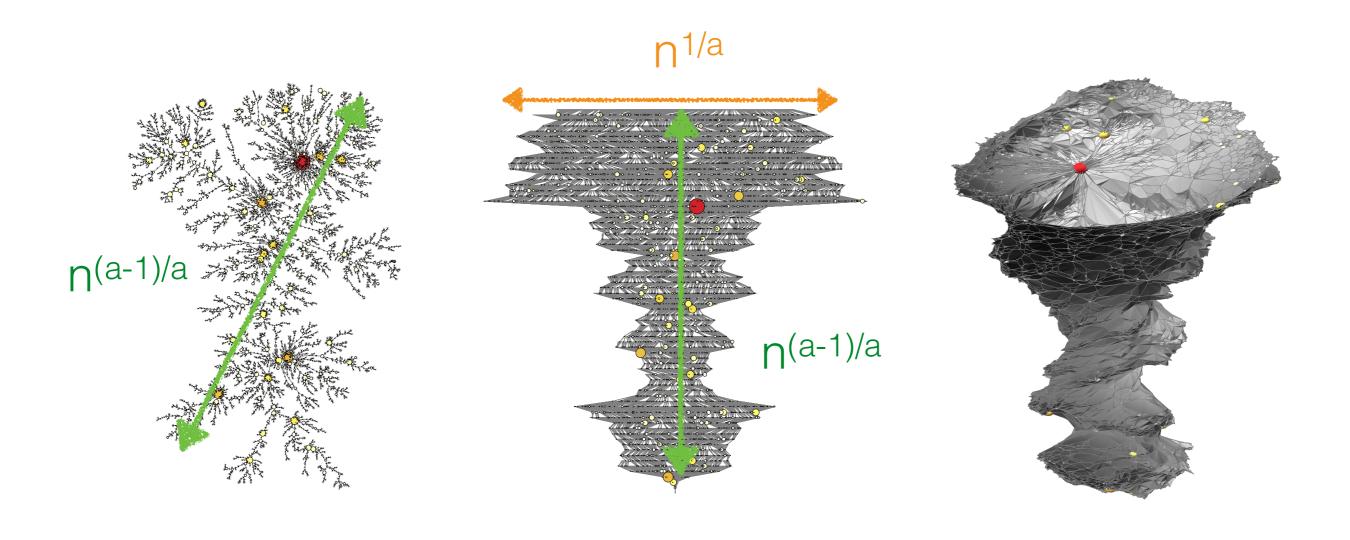


Figure – Un grand arbre (tronqué), la représentation en hauteur et la géométrie causale associée



#### Encore des dessins (3)

Maintenant a = 1.7

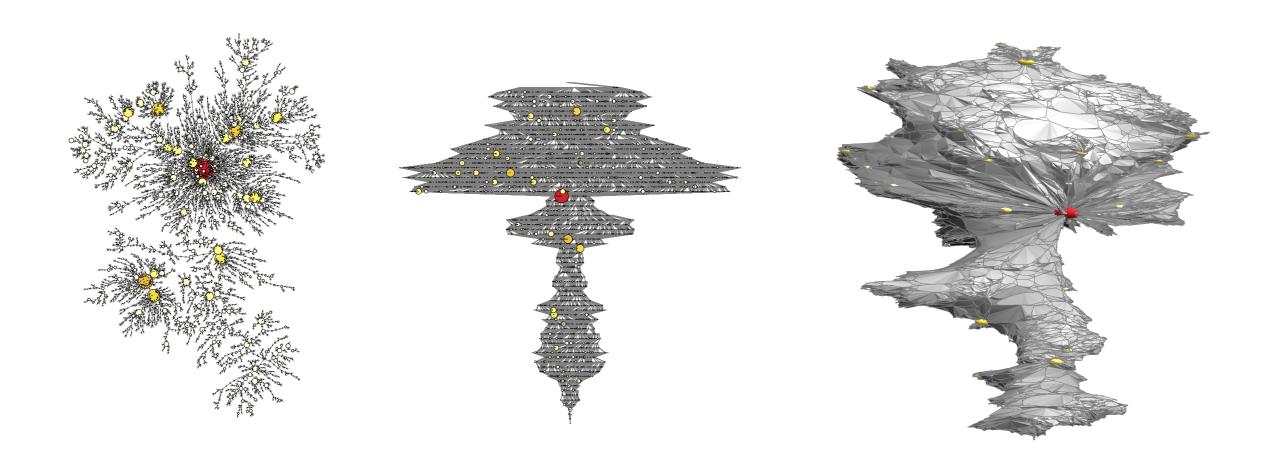


Figure – Un grand arbre (tronqué), la représentation en hauteur et la géométrie causale associée



### Encore des dessins (3)

On descend encore : a = 1.6

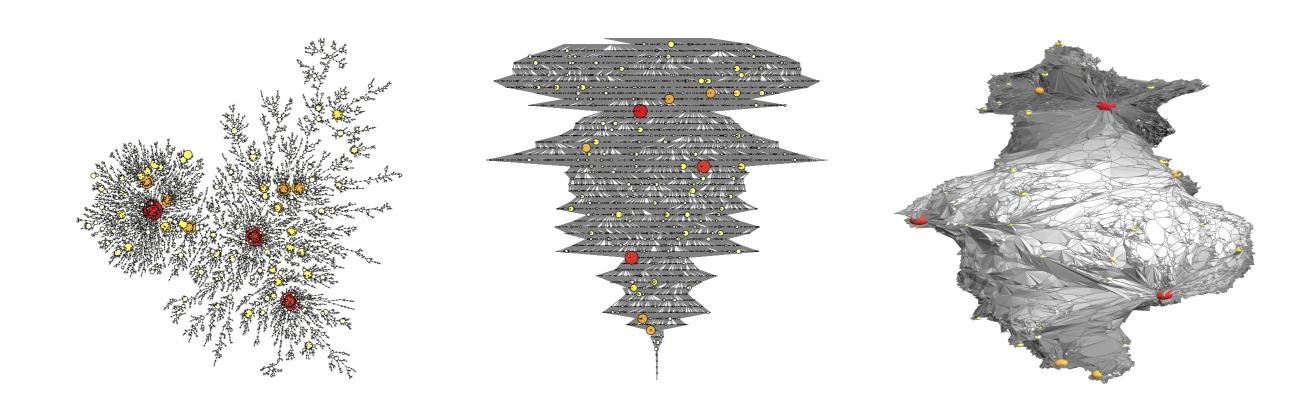
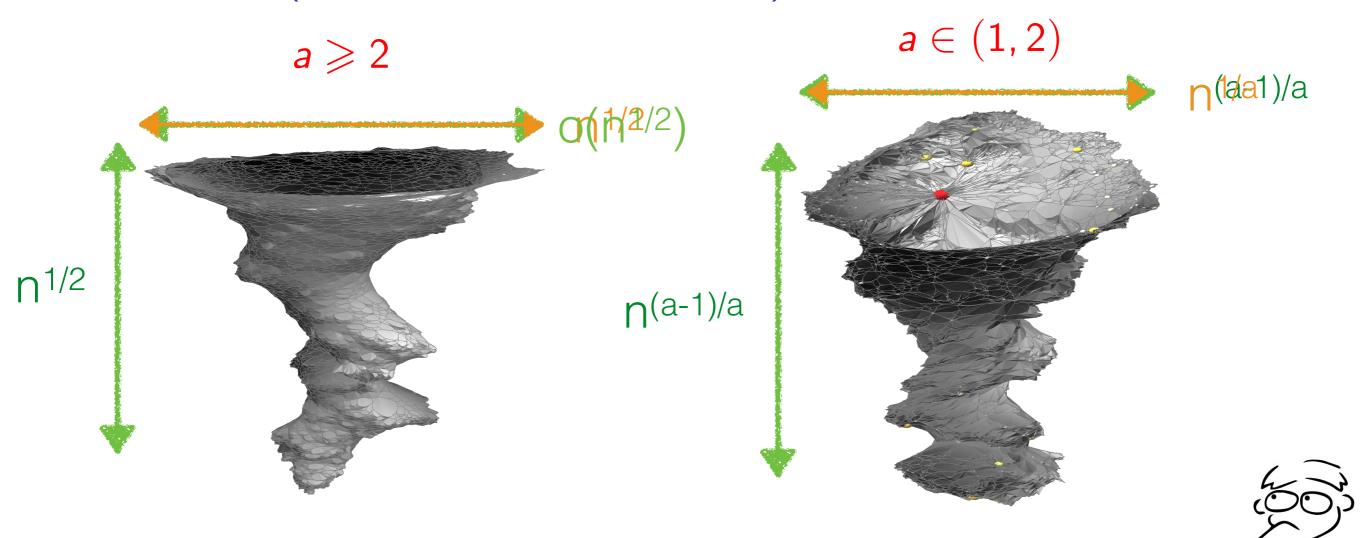


Figure – Un grand arbre (tronqué), la représentation en hauteur et la géométrie causale associée



### Limite d'échelle de cartes causales

#### Theorem (C., Hutchcroft, Nachmias)

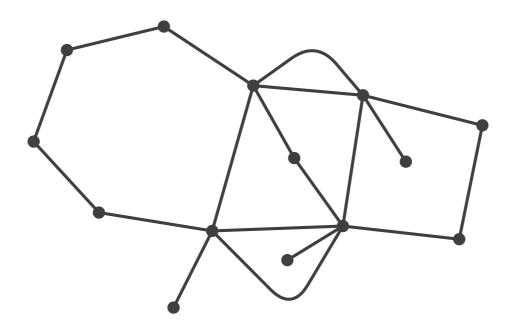


# Cartes planaires aléatoires



### Boltzmann planar maps

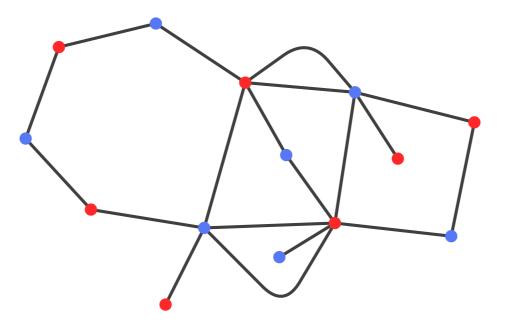
Carte planaire = graphe planaire dessiné sur le plan.





#### Bottzmann planar maps

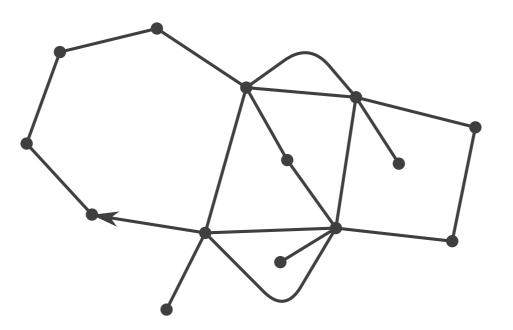
Carte planaire = graphe planaire dessiné sur le plan. On se contente ici des cartes biparties (faces de degrés pairs) et enracinées.





#### Bottzmann planar maps

Carte planaire = graphe planaire dessiné sur le plan. On se contente ici des cartes biparties (faces de degrés pairs) et enracinées.





#### Bottzmann planar maps

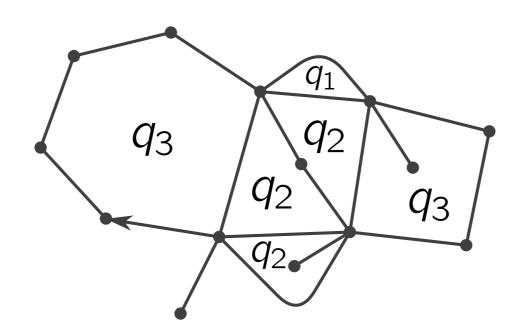
Carte planaire = graphe planaire dessiné sur le plan. On se contente ici des cartes biparties (faces de degrés pairs) et enracinées.

Si  $\mathbf{q} = (q_1, q_2, ...)$  est une suite de poids tels que

$$q_k \sim c \cdot k^{-a-\frac{1}{2}}, \quad a > 1$$

suivant Marckert & Miermont on crée une mesure sur l'ensemble des cartes (planaires biparties finies) en posant

$$w_{\mathbf{q}}(\mathfrak{m}) = \prod_{f \in \mathsf{Faces}(\mathfrak{m})} q_{\deg(f)/2}.$$





#### Boltzmann planar maps

Carte planaire = graphe planaire dessiné sur le plan. On se contente ici des cartes biparties (faces de degrés pairs) et enracinées.

Si  $\mathbf{q} = (q_1, q_2, ...)$  est une suite de poids tels que

$$q_k \sim c \cdot k^{-a-\frac{1}{2}}, \quad a > 1$$

suivant Marckert & Miermont on crée une mesure sur l'ensemble des cartes (planaires biparties finies) en posant

$$w_{\mathbf{q}}(\mathfrak{m}) = \prod_{f \in \mathsf{Faces}(\mathfrak{m})} q_{\deg(f)/2}.$$





### Boltzmann planar maps

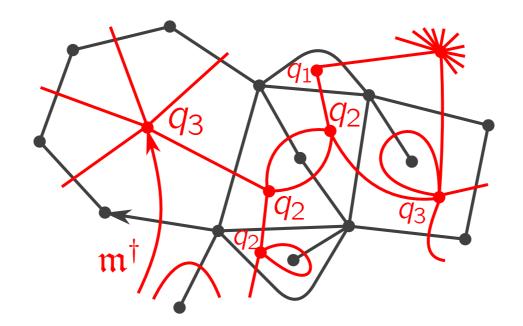
Carte planaire = graphe planaire dessiné sur le plan. On se contente ici des cartes biparties (faces de degrés pairs) et enracinées.

Si  $\mathbf{q} = (q_1, q_2, ...)$  est une suite de poids tels que

$$q_k \sim c \cdot k^{-a-\frac{1}{2}}, \quad a > 1$$

suivant Marckert & Miermont on crée une mesure sur l'ensemble des cartes (planaires biparties finies) en posant

$$w_{\mathbf{q}}(\mathfrak{m}) = \prod_{f \in \mathsf{Faces}(\mathfrak{m})} q_{\deg(f)/2}.$$





Rappel : Criticalité

- ▶ Cas des marches :  $\theta$  est p.s. fini et  $\mathbb{E}[\theta] = \infty$ .
- ▶ Cas des arbres : T est p.s. fini et  $\mathbb{E}[T] = \infty$ .



Rappel : Criticalité

- ▶ Cas des marches :  $\theta$  est p.s. fini et  $\mathbb{E}[\theta] = \infty$ .
- ▶ Cas des arbres : T est p.s. fini et  $\mathbb{E}[T] = \infty$ .

On suppose que **q** est admissible :  $w_{\mathbf{q}}(\text{Cartes finies}) < \infty$  (on normalise pour avoir une mesure de proba).



Rappel : Criticalité

- ▶ Cas des marches :  $\theta$  est p.s. fini et  $\mathbb{E}[\theta] = \infty$ .
- ▶ Cas des arbres : T est p.s. fini et  $\mathbb{E}[T] = \infty$ .

On suppose que **q** est admissible :  $w_{\mathbf{q}}(\text{Cartes finies}) < \infty$  (on normalise pour avoir une mesure de proba).

On suppose aussi que q est critique (Bernardi, C., Miermont) :

$$\int dw_{\mathbf{q}}(\mathfrak{m})|\mathfrak{m}|^2 = \infty.$$



Rappel : Criticalité

- ▶ Cas des marches :  $\theta$  est p.s. fini et  $\mathbb{E}[\theta] = \infty$ .
- ▶ Cas des arbres : T est p.s. fini et  $\mathbb{E}[T] = \infty$ .

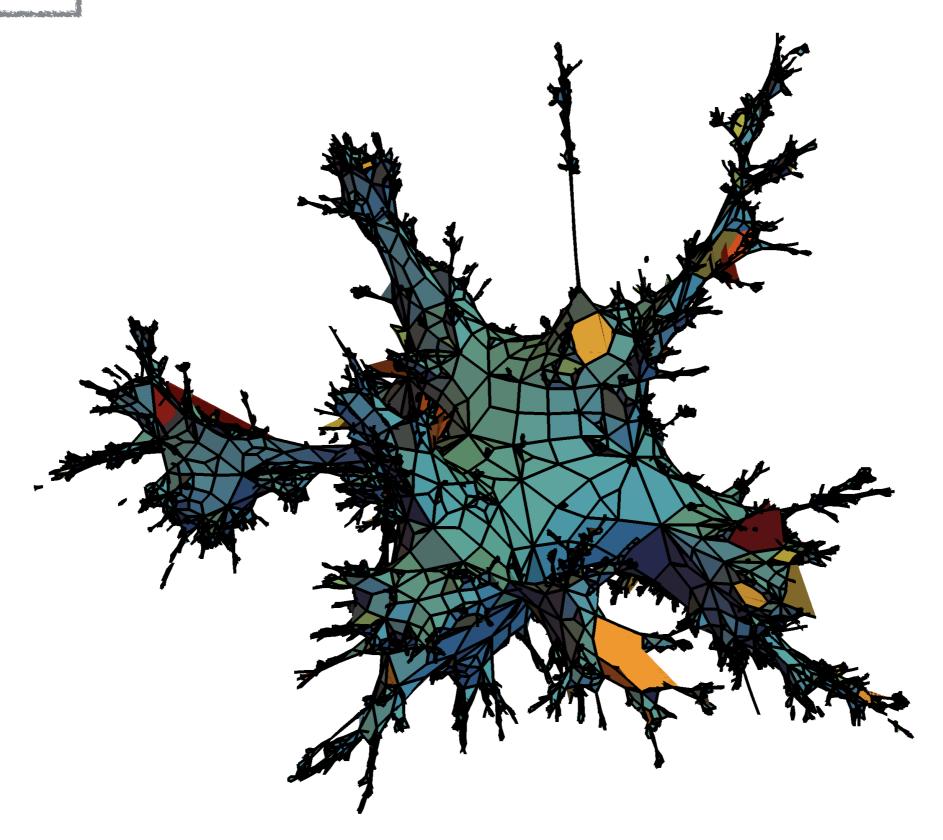
On suppose que **q** est admissible :  $w_{\mathbf{q}}(\text{Cartes finies}) < \infty$  (on normalise pour avoir une mesure de proba).

On suppose aussi que q est critique (Bernardi, C., Miermont) :

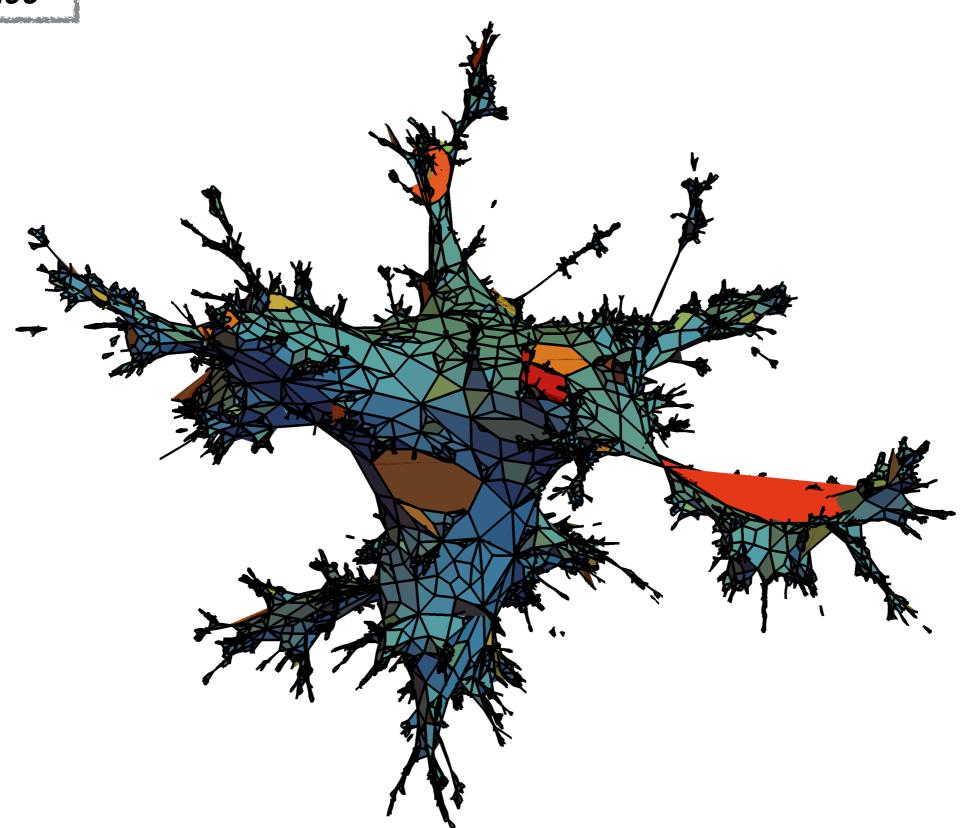
$$\int dw_{\mathbf{q}}(\mathfrak{m})|\mathfrak{m}|^2 = \infty.$$

On peut alors considérer  $\mathfrak{M}_n$  une carte distribuée selon  $w_{\mathbf{q}}$  conditionnée à avoir taille n.

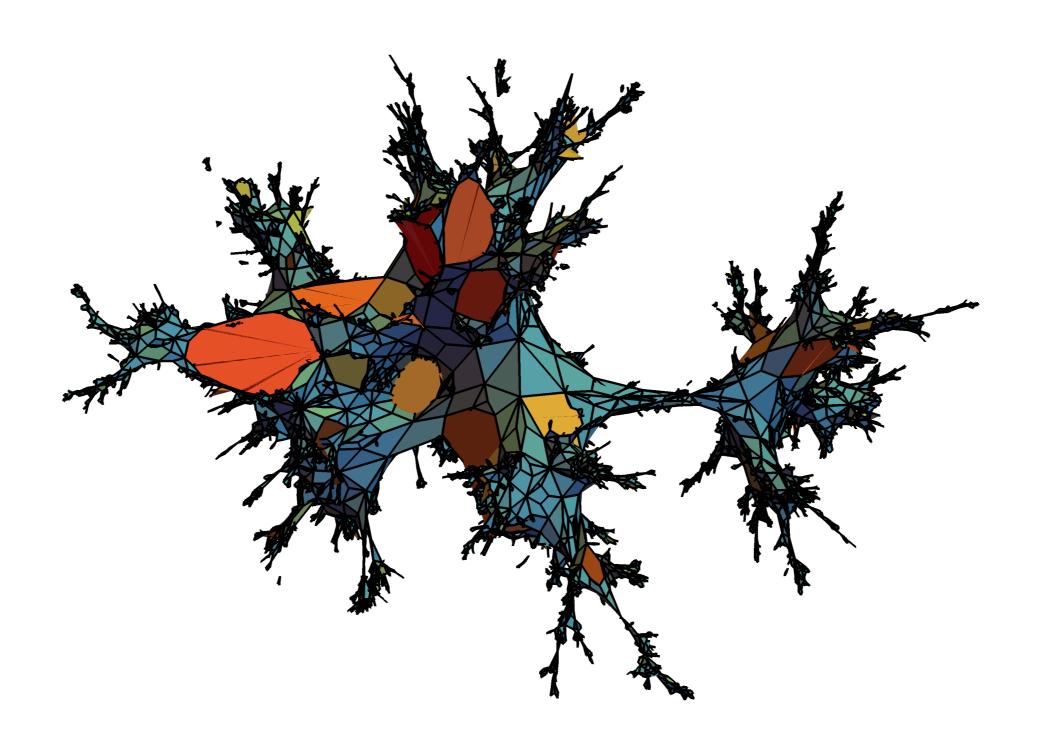




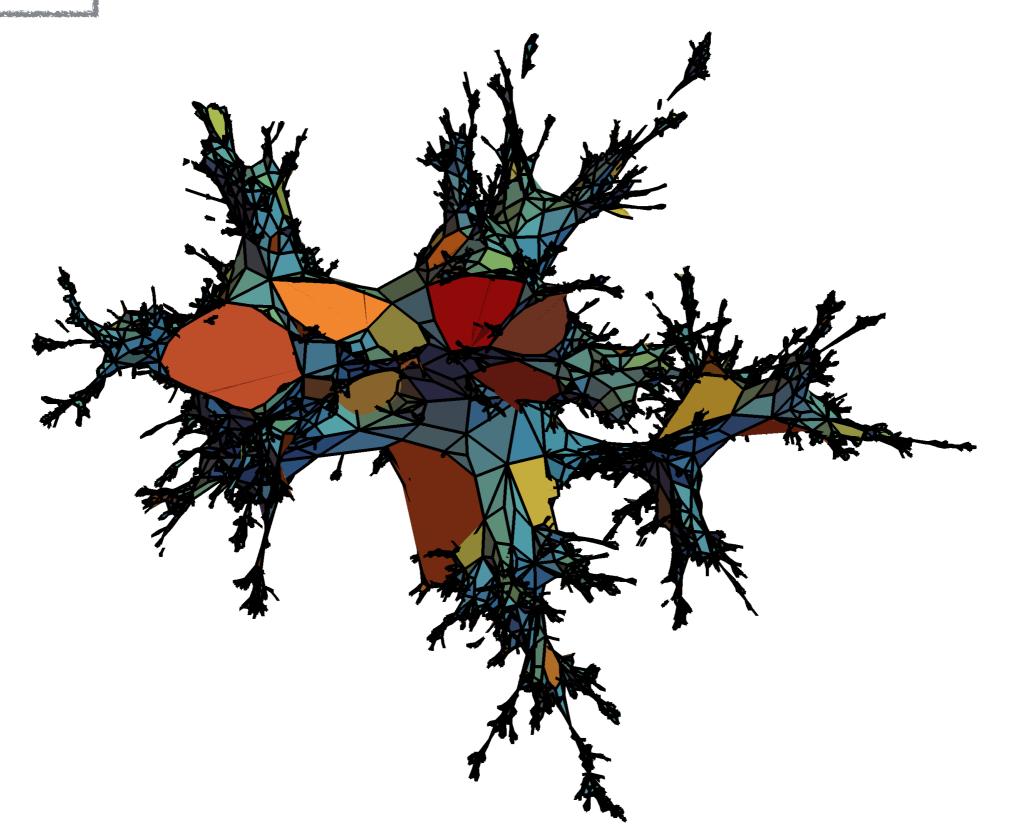








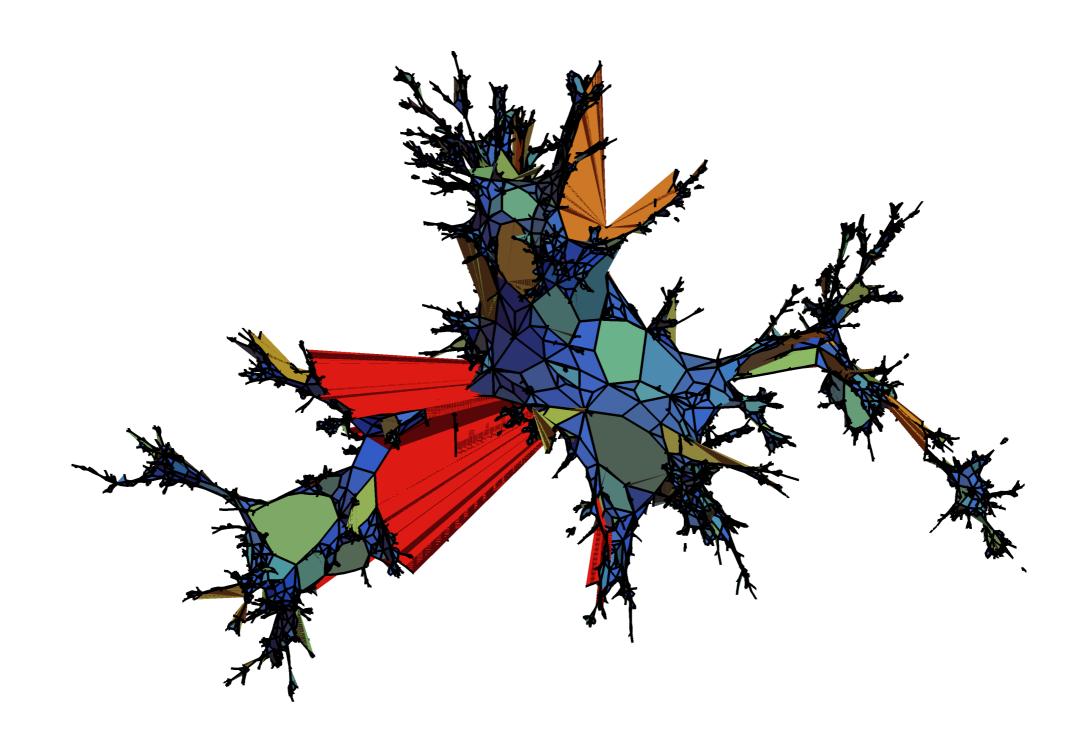




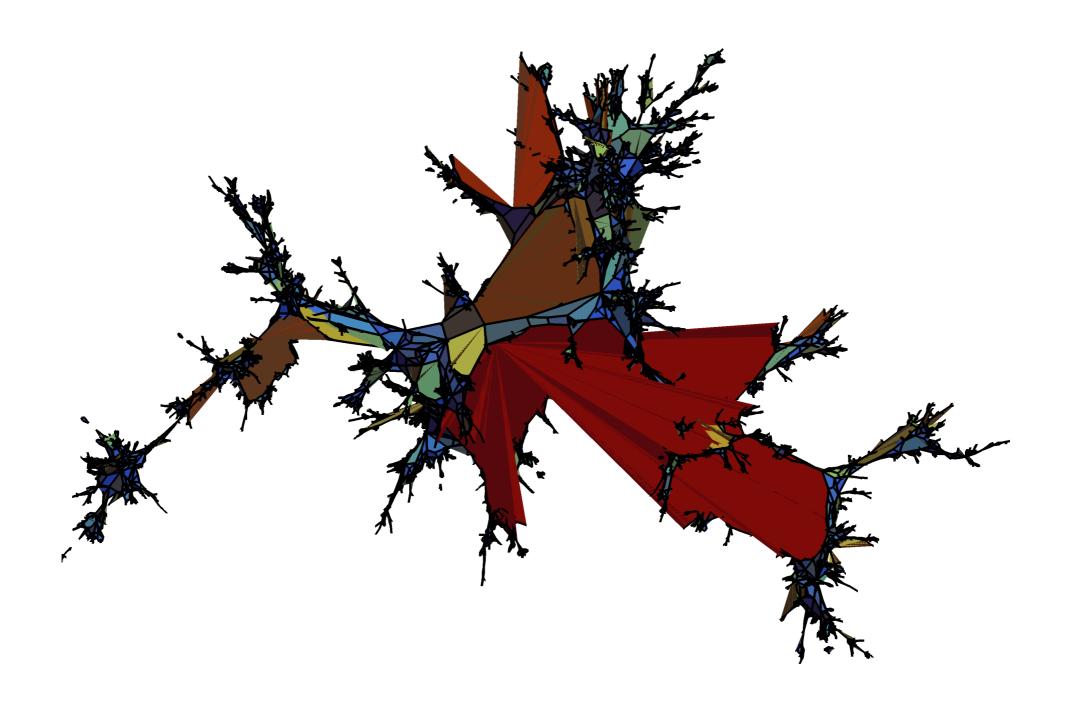


















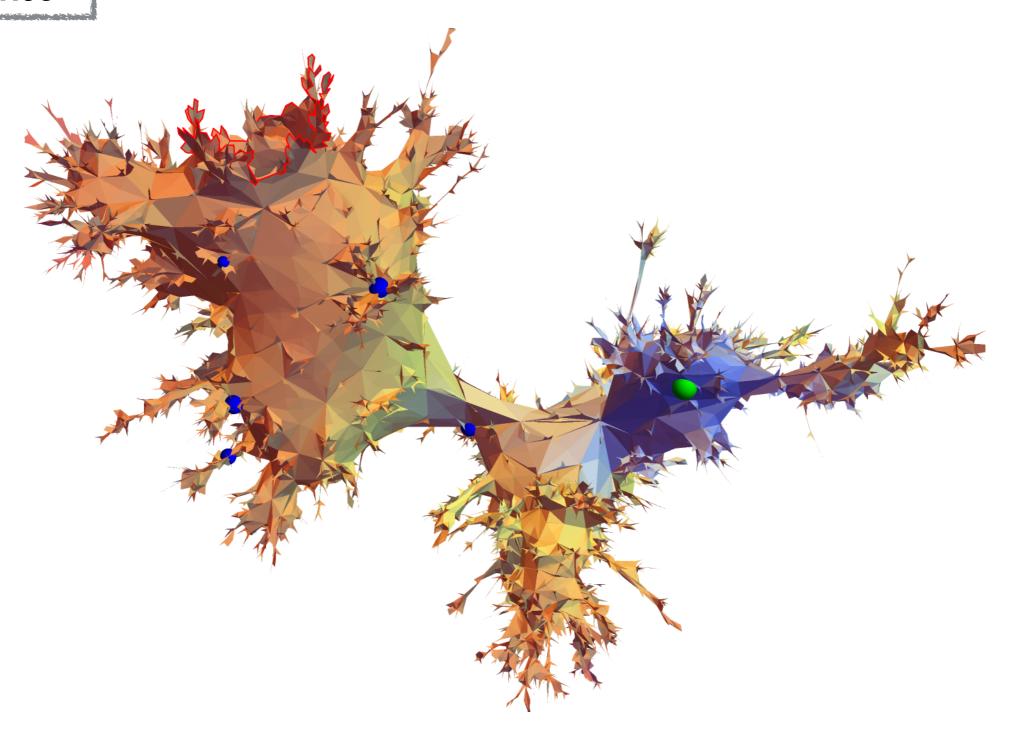


Figure – Courtesy of T. Budd



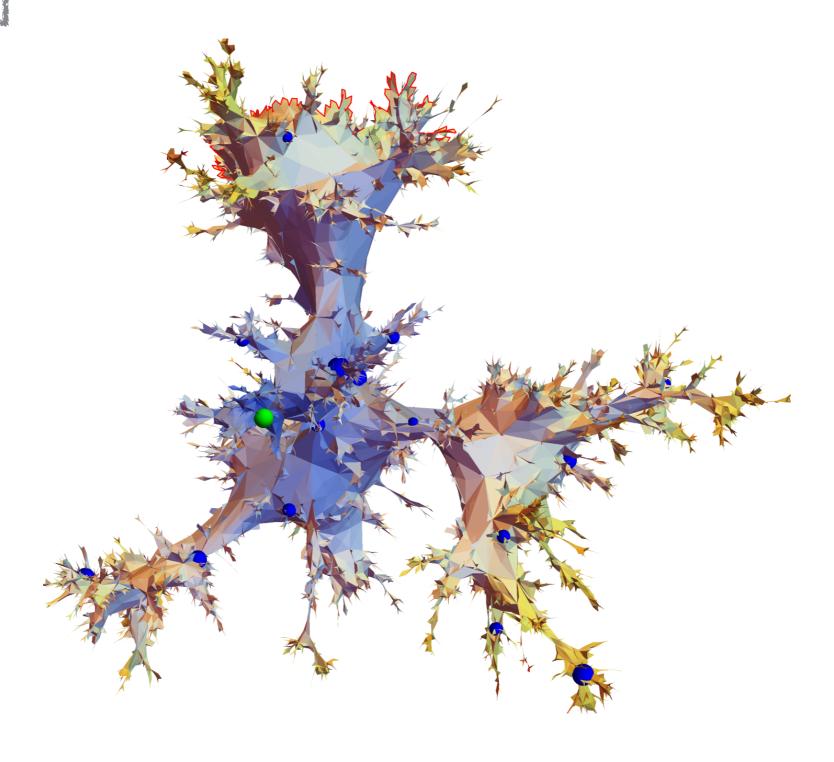


Figure – Simulations by T. Budd



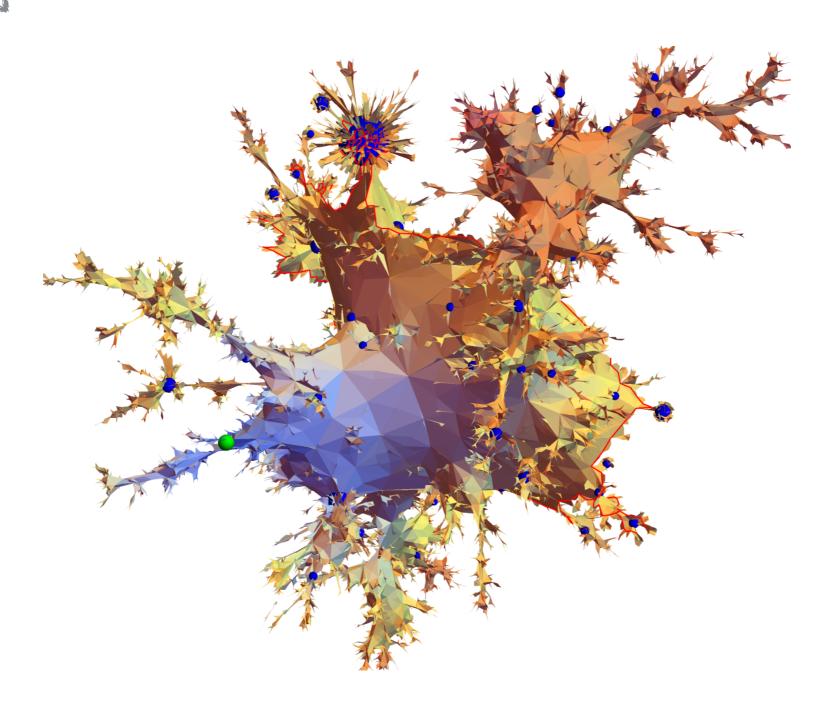


Figure – Simulations by T. Budd



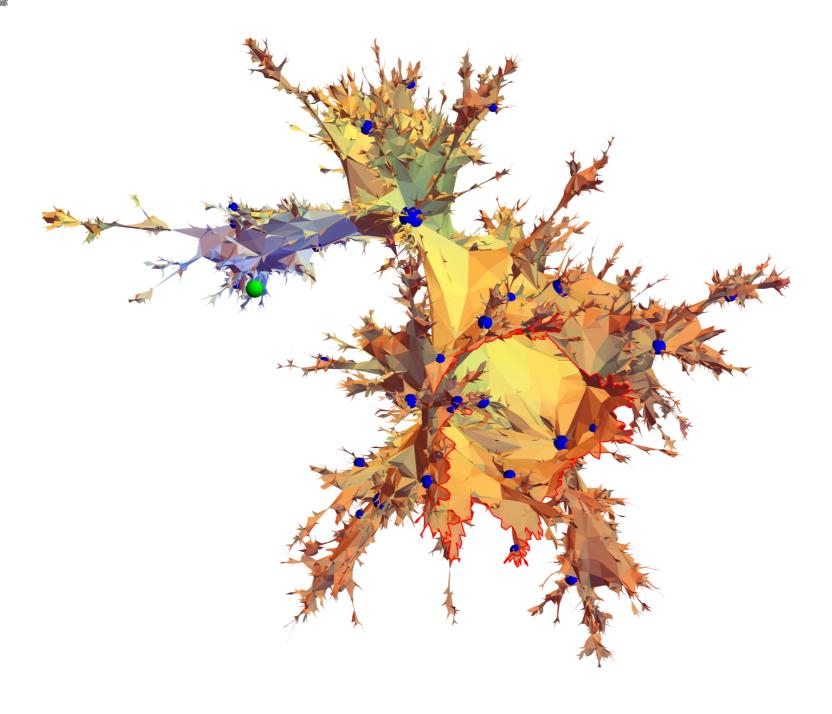


Figure – Simulations by T. Budd



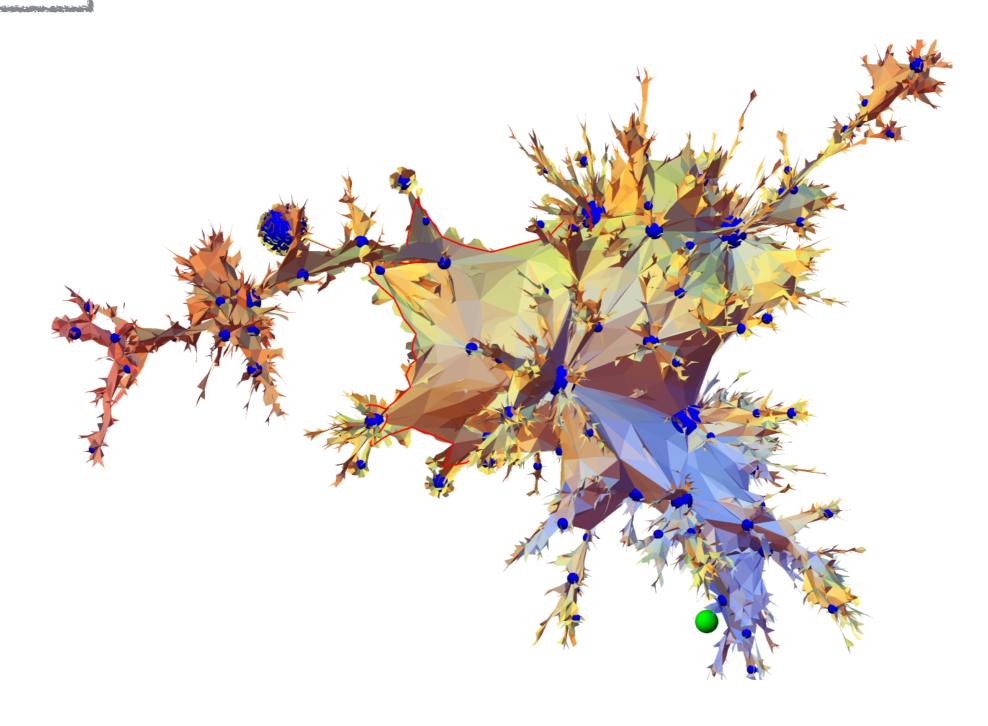


Figure – Simulations by T. Budd



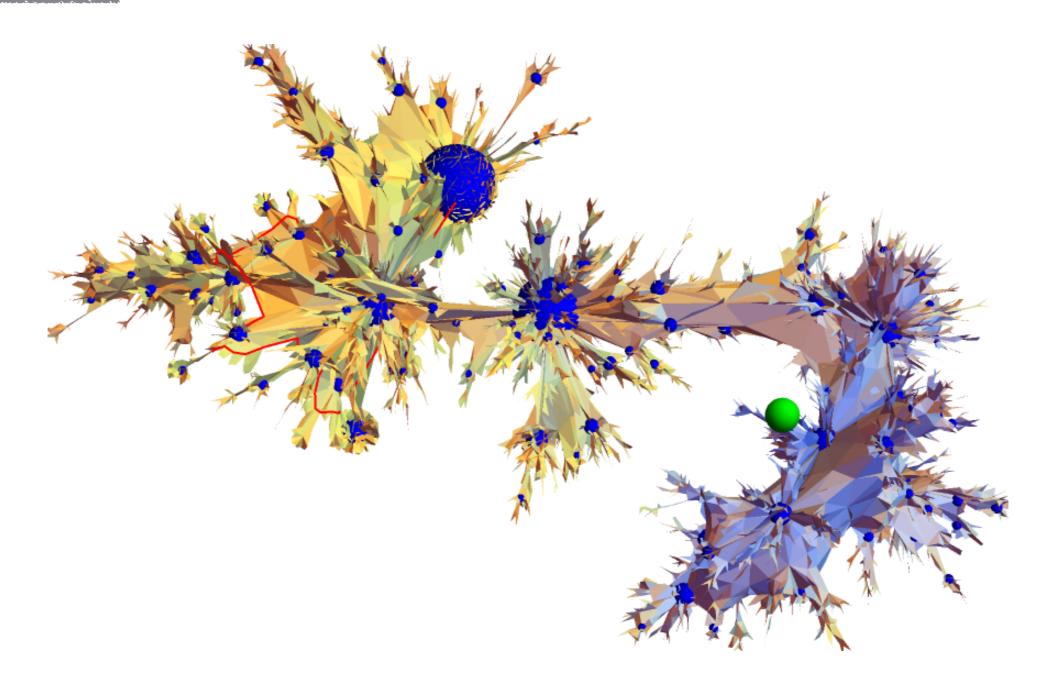


Figure – Simulations by T. Budd



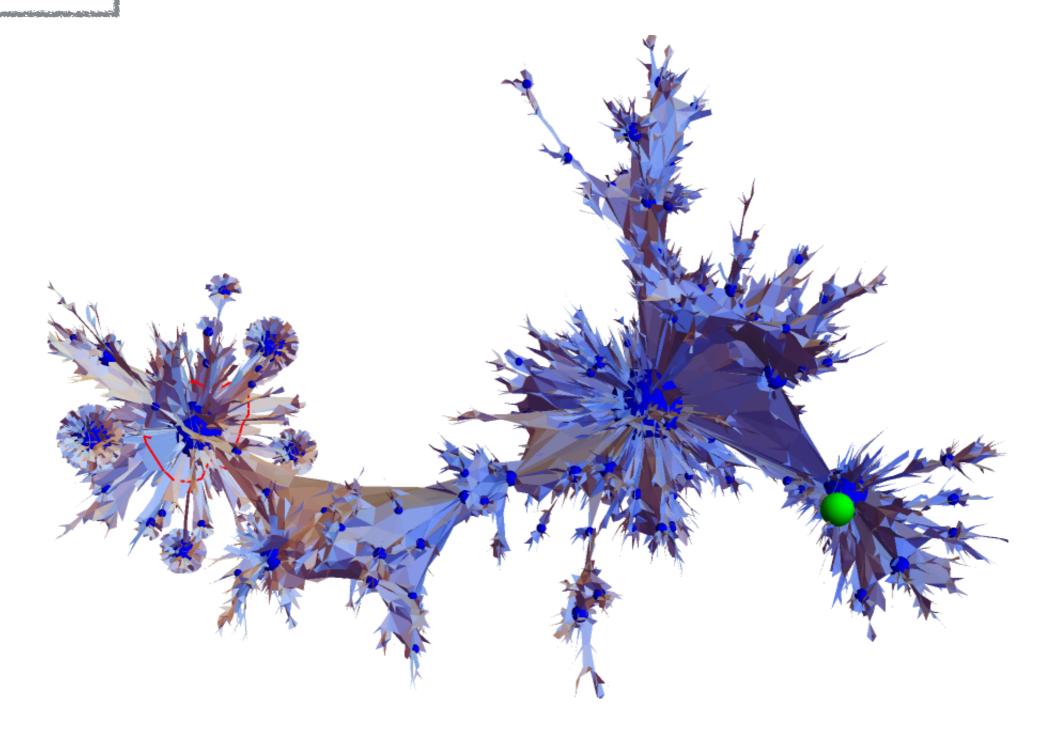


Figure – Simulations by T. Budd



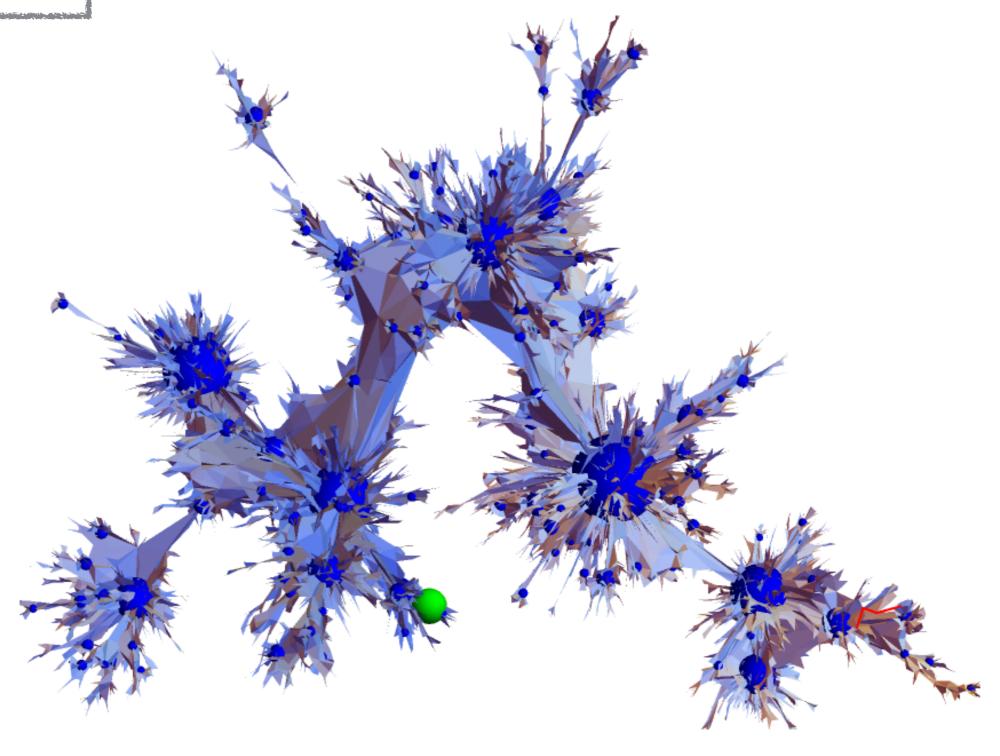


Figure – Simulations by T. Budd

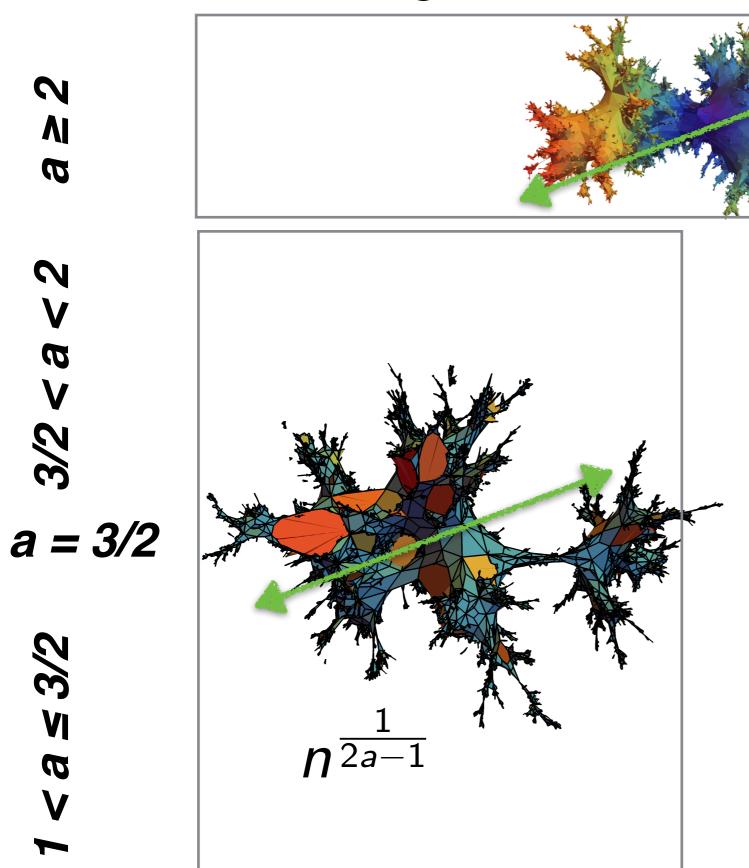


#### m (large faces)

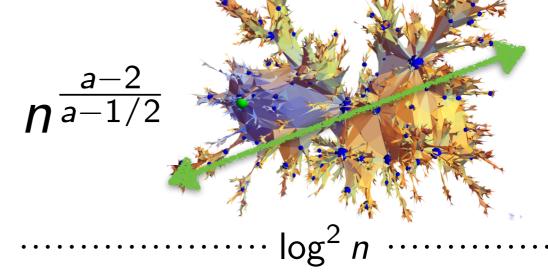
# m (large degrees)

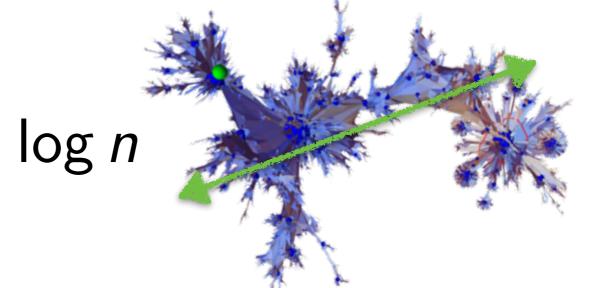
S V a

3/2



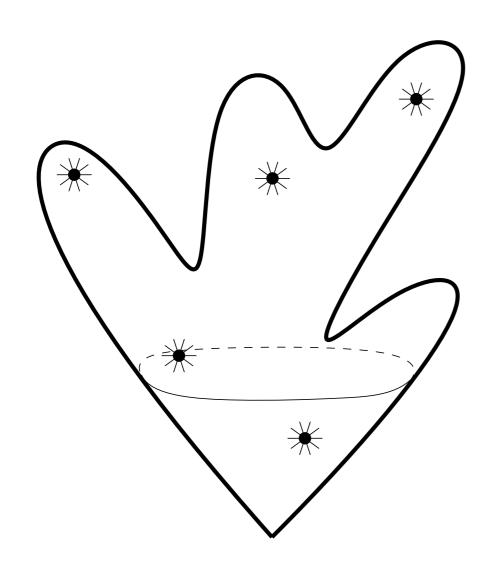
$$n^{1/4}$$





### Comment construire une sphere stable?

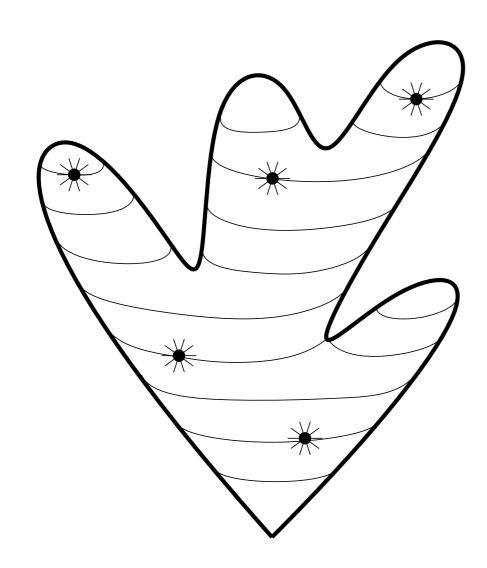
Si m<sup>†</sup> est une carte avec des grands degrés on la saucissonne en tranches à hauteur :





### Comment construire une sphere stable?

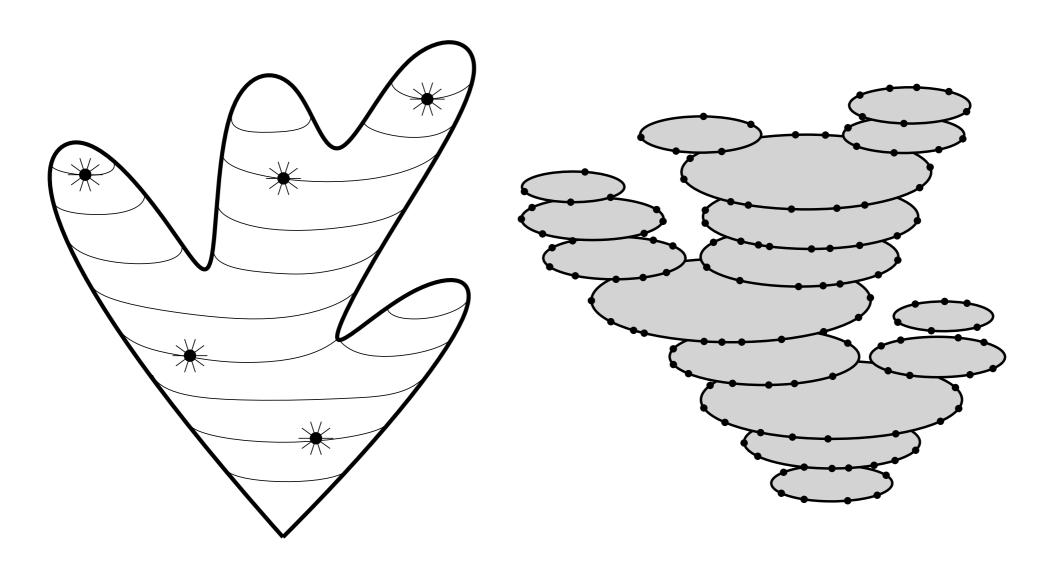
Si m<sup>†</sup> est une carte avec des grands degrés on la saucissonne en tranches à hauteur :





### Comment construire une sphere stable?

Si m<sup>†</sup> est une carte avec des grands degrés on la saucissonne en tranches à hauteur :





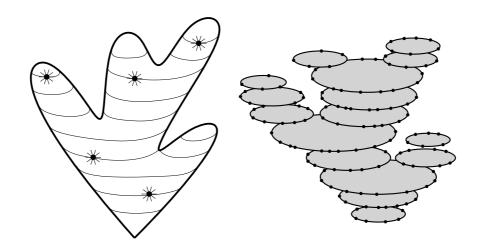
### Comment construire une sphere stable? (II)

Si  $\mathbf{L}(r)$  est la suite des périmètres des cycles à hauteur r alors on a Theorem (Bertoin, Budd, C., Kortchemski, '16)

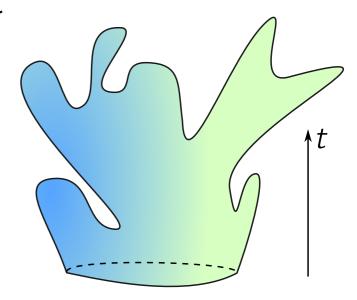
Avec nos hypothèses pour  $a \in (2, \frac{5}{2})$  on a (en trichant un peu)

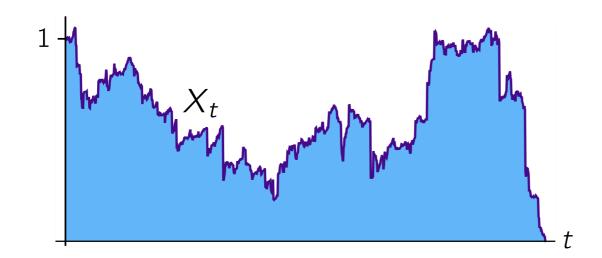
$$\left(\frac{\mathsf{L}(\lfloor \ell^{\mathsf{a}-2} \cdot t \rfloor)}{\ell}\right)_{t \geqslant 0} \xrightarrow[l \to \infty]{(\mathsf{d})} \left(\mathsf{X}_t^{(\mathsf{a})}\right)_{t \geqslant 0},$$

où  $\mathbf{X}_{t}^{(a)}$  "est" un self-similar growth-fragmentation process (Bertoin).

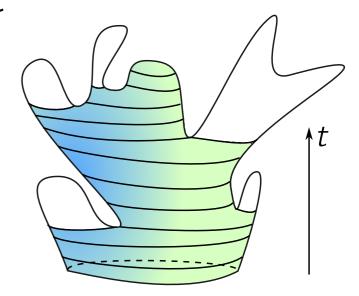


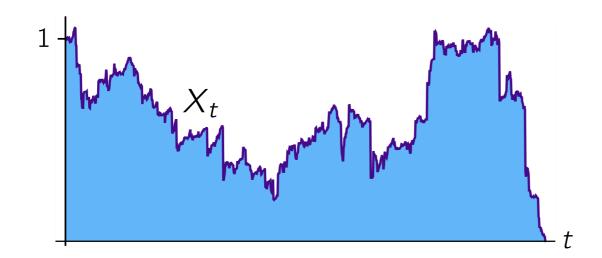




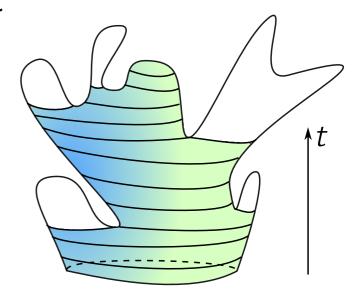


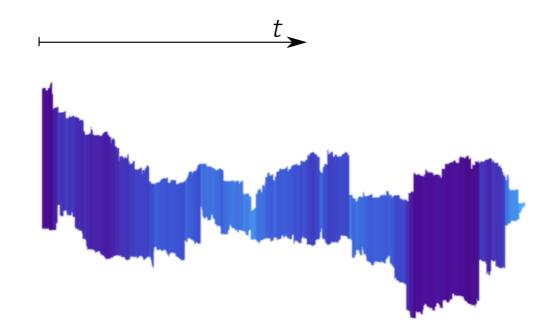






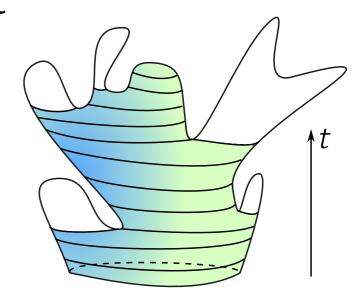


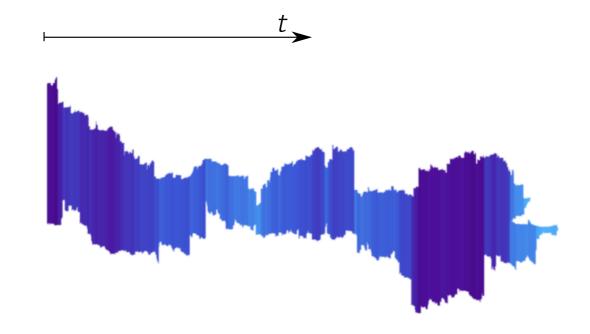






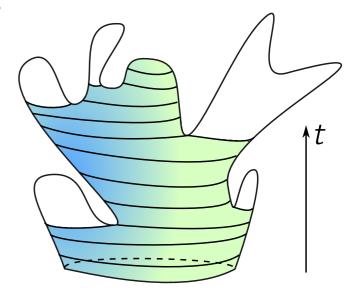
- On a un processus autosimilaire  $(X_t)$  décrivant la limite d'échelle du processus du périmètre du *locally largest* cycle.
- Pour chaque saut négatif de ce processus on lui colle une copie remise à l'échelle de X.

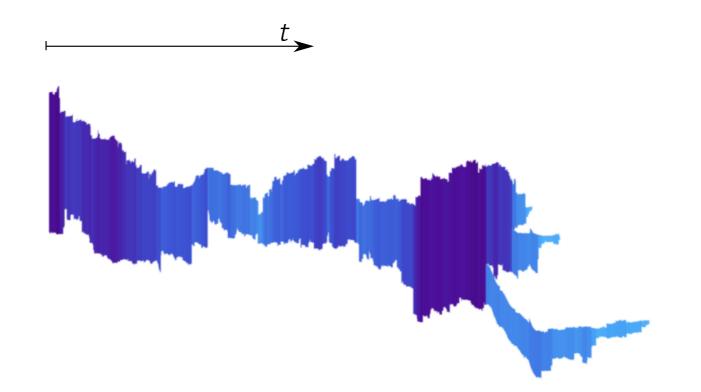






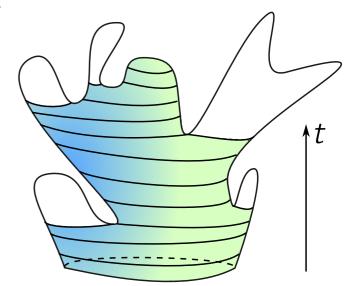
- On a un processus autosimilaire  $(X_t)$  décrivant la limite d'échelle du processus du périmètre du *locally largest* cycle.
- Pour chaque saut négatif de ce processus on lui colle une copie remise à l'échelle de X.

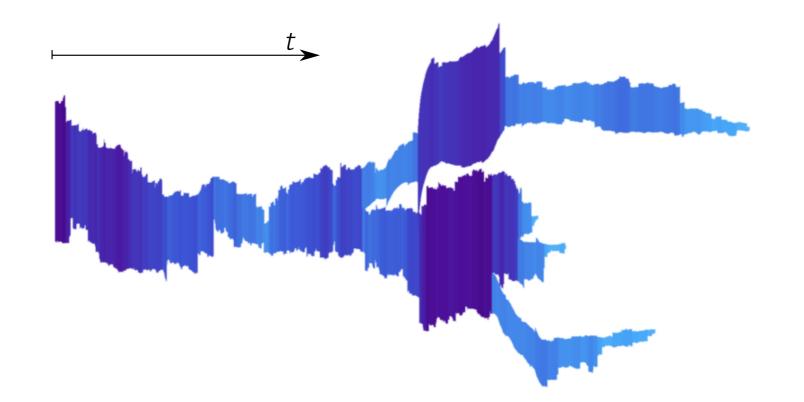






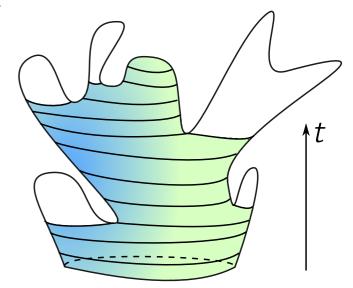
- On a un processus autosimilaire  $(X_t)$  décrivant la limite d'échelle du processus du périmètre du *locally largest* cycle.
- Pour chaque saut négatif de ce processus on lui colle une copie remise à l'échelle de X.

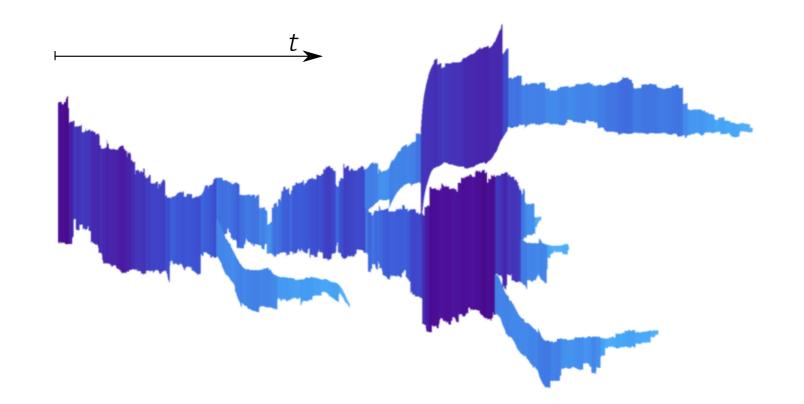






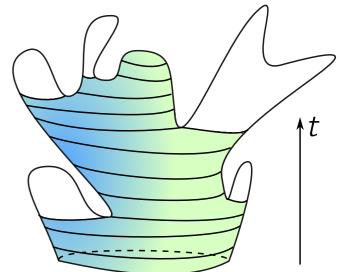
- On a un processus autosimilaire  $(X_t)$  décrivant la limite d'échelle du processus du périmètre du *locally largest* cycle.
- Pour chaque saut négatif de ce processus on lui colle une copie remise à l'échelle de X.

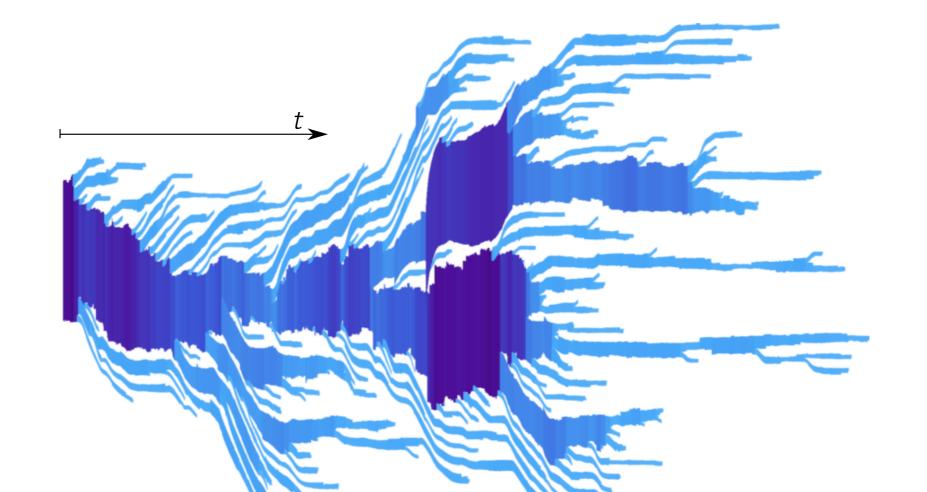






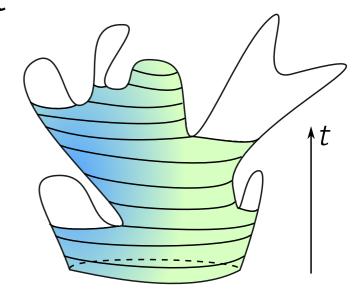
- On a un processus autosimilaire  $(X_t)$  décrivant la limite d'échelle du processus du périmètre du *locally largest* cycle.
- ▶ Pour chaque saut négatif de ce processus on lui colle une copie remise à l'échelle de X.

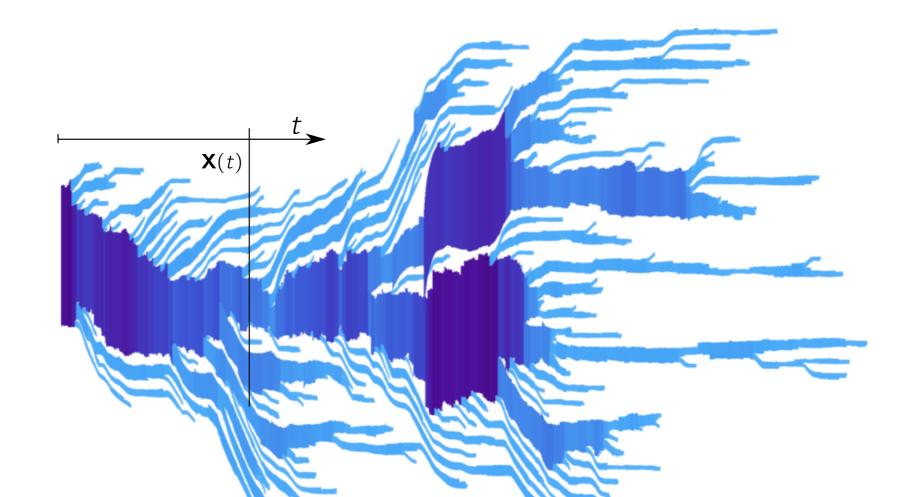






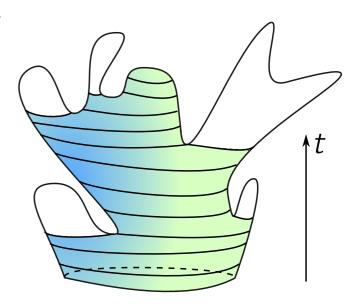
- Pour chaque saut négatif de ce processus on lui colle une copie remise à l'échelle de X.
- Alors  $\mathbf{X}_{t}^{(a)}$  est le processus des tailles des cycles en vie au temps t.

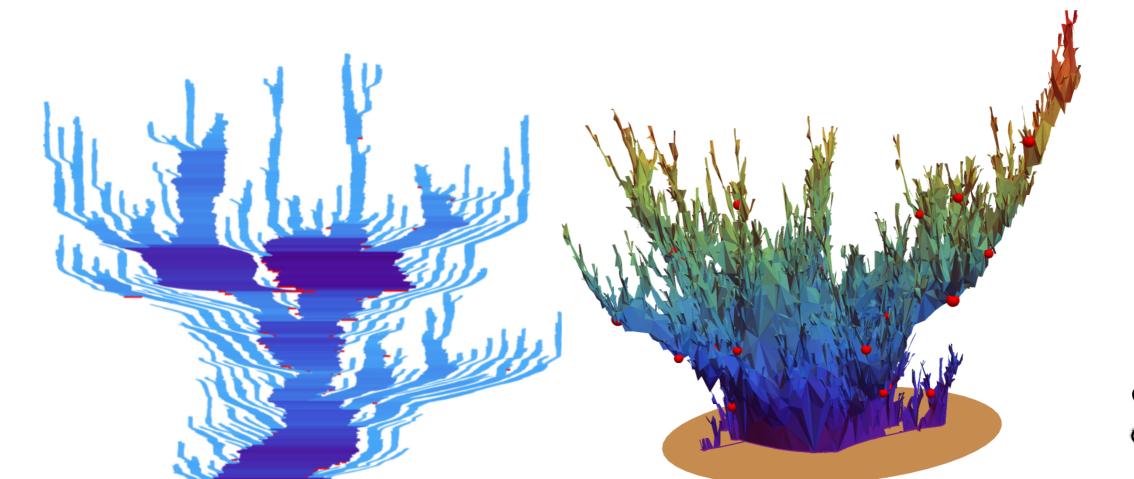






- On a un processus autosimilaire  $(X_t)$  décrivant la limite d'échelle du processus du périmètre du *locally largest* cycle.
- Pour chaque saut négatif de ce processus on lui colle une copie remise à l'échelle de X.
- ▶ Alors  $\mathbf{X}_{t}^{(a)}$  est le processus des tailles des cycles en vie au temps t.

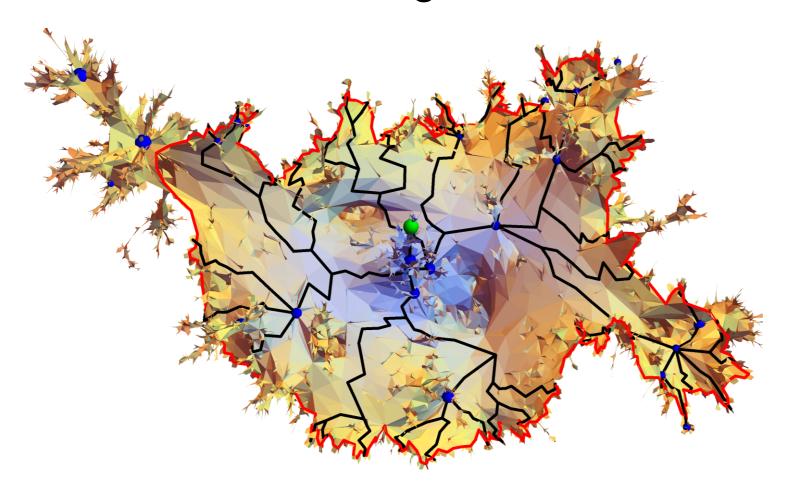






## Ce qu'il reste à faire

- Recoller les cycles dans le continu
- Définir des géodésiques
- Créer la sphere stable continue (et l'étudier, topologie, dimension de Hausdorff...)
- Montrer la convergence des modèles discrets





Merci pour votre attention